155 lines
5.3 KiB
C++
Executable File
155 lines
5.3 KiB
C++
Executable File
/*
|
|
* Copyright 2016 The Cartographer Authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "cartographer/mapping/3d/range_data_inserter_3d.h"
|
|
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "cartographer/common/internal/testing/lua_parameter_dictionary_test_helpers.h"
|
|
#include "gmock/gmock.h"
|
|
|
|
namespace cartographer {
|
|
namespace mapping {
|
|
namespace {
|
|
|
|
class RangeDataInserter3DTest : public ::testing::Test {
|
|
protected:
|
|
RangeDataInserter3DTest() : hybrid_grid_(1.f), intensity_hybrid_grid_(1.f) {
|
|
auto parameter_dictionary = common::MakeDictionary(
|
|
"return { "
|
|
"hit_probability = 0.7, "
|
|
"miss_probability = 0.4, "
|
|
"num_free_space_voxels = 1000, "
|
|
"intensity_threshold = 100, "
|
|
"}");
|
|
options_ = CreateRangeDataInserterOptions3D(parameter_dictionary.get());
|
|
range_data_inserter_.reset(new RangeDataInserter3D(options_));
|
|
}
|
|
|
|
void InsertPointCloud() {
|
|
const Eigen::Vector3f origin = Eigen::Vector3f(0.f, 0.f, -4.f);
|
|
const std::vector<sensor::RangefinderPoint> returns = {
|
|
{Eigen::Vector3f{-3.f, -1.f, 4.f}},
|
|
{Eigen::Vector3f{-2.f, 0.f, 4.f}},
|
|
{Eigen::Vector3f{-1.f, 1.f, 4.f}},
|
|
{Eigen::Vector3f{0.f, 2.f, 4.f}}};
|
|
range_data_inserter_->Insert(
|
|
sensor::RangeData{origin, sensor::PointCloud(returns), {}},
|
|
&hybrid_grid_,
|
|
/*intensity_hybrid_grid=*/nullptr);
|
|
}
|
|
|
|
void InsertPointCloudWithIntensities() {
|
|
const Eigen::Vector3f origin = Eigen::Vector3f(0.f, 0.f, -4.f);
|
|
const std::vector<sensor::RangefinderPoint> returns = {
|
|
{Eigen::Vector3f{-3.f, -1.f, 4.f}},
|
|
{Eigen::Vector3f{-2.f, 0.f, 4.f}},
|
|
{Eigen::Vector3f{-1.f, 1.f, 4.f}},
|
|
{Eigen::Vector3f{0.f, 2.f, 4.f}}};
|
|
const std::vector<float> intensities{7.f, 8.f, 9.f, 10.f};
|
|
range_data_inserter_->Insert(
|
|
sensor::RangeData{origin, sensor::PointCloud(returns, intensities), {}},
|
|
&hybrid_grid_, &intensity_hybrid_grid_);
|
|
}
|
|
|
|
float GetProbability(float x, float y, float z) const {
|
|
return hybrid_grid_.GetProbability(
|
|
hybrid_grid_.GetCellIndex(Eigen::Vector3f(x, y, z)));
|
|
}
|
|
|
|
float GetIntensity(float x, float y, float z) const {
|
|
return intensity_hybrid_grid_.GetIntensity(
|
|
intensity_hybrid_grid_.GetCellIndex(Eigen::Vector3f(x, y, z)));
|
|
}
|
|
|
|
float IsKnown(float x, float y, float z) const {
|
|
return hybrid_grid_.IsKnown(
|
|
hybrid_grid_.GetCellIndex(Eigen::Vector3f(x, y, z)));
|
|
}
|
|
|
|
const proto::RangeDataInserterOptions3D& options() const { return options_; }
|
|
|
|
private:
|
|
HybridGrid hybrid_grid_;
|
|
IntensityHybridGrid intensity_hybrid_grid_;
|
|
std::unique_ptr<RangeDataInserter3D> range_data_inserter_;
|
|
proto::RangeDataInserterOptions3D options_;
|
|
};
|
|
|
|
TEST_F(RangeDataInserter3DTest, InsertPointCloud) {
|
|
InsertPointCloud();
|
|
EXPECT_NEAR(options().miss_probability(), GetProbability(0.f, 0.f, -4.f),
|
|
1e-4);
|
|
EXPECT_NEAR(options().miss_probability(), GetProbability(0.f, 0.f, -3.f),
|
|
1e-4);
|
|
EXPECT_NEAR(options().miss_probability(), GetProbability(0.f, 0.f, -2.f),
|
|
1e-4);
|
|
for (int x = -4; x <= 4; ++x) {
|
|
for (int y = -4; y <= 4; ++y) {
|
|
if (x < -3 || x > 0 || y != x + 2) {
|
|
EXPECT_FALSE(IsKnown(x, y, 4.f));
|
|
} else {
|
|
EXPECT_NEAR(options().hit_probability(), GetProbability(x, y, 4.f),
|
|
1e-4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(RangeDataInserter3DTest, InsertPointCloudWithIntensities) {
|
|
InsertPointCloudWithIntensities();
|
|
EXPECT_NEAR(options().miss_probability(), GetProbability(0.f, 0.f, -4.f),
|
|
1e-4);
|
|
EXPECT_NEAR(options().miss_probability(), GetProbability(0.f, 0.f, -3.f),
|
|
1e-4);
|
|
EXPECT_NEAR(options().miss_probability(), GetProbability(0.f, 0.f, -2.f),
|
|
1e-4);
|
|
for (int x = -4; x <= 4; ++x) {
|
|
for (int y = -4; y <= 4; ++y) {
|
|
if (x < -3 || x > 0 || y != x + 2) {
|
|
EXPECT_FALSE(IsKnown(x, y, 4.f));
|
|
EXPECT_NEAR(0.f, GetIntensity(x, y, 4.f), 1e-6);
|
|
} else {
|
|
EXPECT_NEAR(options().hit_probability(), GetProbability(x, y, 4.f),
|
|
1e-4);
|
|
EXPECT_NEAR(10 + x, GetIntensity(x, y, 4.f), 1e-6);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(RangeDataInserter3DTest, ProbabilityProgression) {
|
|
InsertPointCloud();
|
|
EXPECT_NEAR(options().hit_probability(), GetProbability(-2.f, 0.f, 4.f),
|
|
1e-4);
|
|
EXPECT_NEAR(options().miss_probability(), GetProbability(-2.f, 0.f, 3.f),
|
|
1e-4);
|
|
EXPECT_NEAR(options().miss_probability(), GetProbability(0.f, 0.f, -3.f),
|
|
1e-4);
|
|
|
|
for (int i = 0; i < 1000; ++i) {
|
|
InsertPointCloud();
|
|
}
|
|
EXPECT_NEAR(kMaxProbability, GetProbability(-2.f, 0.f, 4.f), 1e-3);
|
|
EXPECT_NEAR(kMinProbability, GetProbability(-2.f, 0.f, 3.f), 1e-3);
|
|
EXPECT_NEAR(kMinProbability, GetProbability(0.f, 0.f, -3.f), 1e-3);
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace mapping
|
|
} // namespace cartographer
|