/* * Copyright 2016 The Cartographer Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "cartographer/sensor/internal/collator.h" #include #include #include "absl/memory/memory.h" #include "cartographer/common/time.h" #include "cartographer/sensor/imu_data.h" #include "cartographer/sensor/internal/test_helpers.h" #include "cartographer/sensor/odometry_data.h" #include "cartographer/sensor/timed_point_cloud_data.h" #include "gtest/gtest.h" namespace cartographer { namespace sensor { namespace { using testing::CollatorInput; using testing::CollatorOutput; TEST(Collator, Ordering) { const int kTrajectoryId = 0; const std::array kSensorId = { {"horizontal_rangefinder", "vertical_rangefinder", "imu", "odometry"}}; std::vector input_data; // Send each sensor_id once to establish a common start time. input_data.push_back( CollatorInput::CreateTimedPointCloudData(kTrajectoryId, kSensorId[0], 0)); input_data.push_back( CollatorInput::CreateTimedPointCloudData(kTrajectoryId, kSensorId[1], 0)); input_data.push_back( CollatorInput::CreateImuData(kTrajectoryId, kSensorId[2], 0)); input_data.push_back( CollatorInput::CreateOdometryData(kTrajectoryId, kSensorId[3], 0)); input_data.push_back(CollatorInput::CreateTimedPointCloudData( kTrajectoryId, kSensorId[0], 100)); input_data.push_back(CollatorInput::CreateTimedPointCloudData( kTrajectoryId, kSensorId[1], 200)); input_data.push_back( CollatorInput::CreateImuData(kTrajectoryId, kSensorId[2], 300)); input_data.push_back(CollatorInput::CreateTimedPointCloudData( kTrajectoryId, kSensorId[0], 400)); input_data.push_back(CollatorInput::CreateTimedPointCloudData( kTrajectoryId, kSensorId[1], 500)); input_data.push_back( CollatorInput::CreateOdometryData(kTrajectoryId, kSensorId[3], 600)); std::vector received; Collator collator; collator.AddTrajectory( kTrajectoryId, absl::flat_hash_set(kSensorId.begin(), kSensorId.end()), [&received, kTrajectoryId](const std::string& sensor_id, std::unique_ptr data) { received.push_back(CollatorOutput(kTrajectoryId, data->GetSensorId(), data->GetTime())); }); input_data[0].MoveToCollator(&collator); input_data[1].MoveToCollator(&collator); input_data[2].MoveToCollator(&collator); input_data[3].MoveToCollator(&collator); input_data[4].MoveToCollator(&collator); input_data[9].MoveToCollator(&collator); input_data[7].MoveToCollator(&collator); input_data[5].MoveToCollator(&collator); input_data[8].MoveToCollator(&collator); input_data[6].MoveToCollator(&collator); EXPECT_EQ(kTrajectoryId, collator.GetBlockingTrajectoryId().value()); ASSERT_EQ(7, received.size()); EXPECT_EQ(input_data[4].expected_output, received[4]); EXPECT_EQ(input_data[5].expected_output, received[5]); EXPECT_EQ(input_data[6].expected_output, received[6]); collator.FinishTrajectory(kTrajectoryId); collator.Flush(); ASSERT_EQ(input_data.size(), received.size()); for (size_t i = 4; i < input_data.size(); ++i) { EXPECT_EQ(input_data[i].expected_output, received[i]); } } TEST(Collator, OrderingMultipleTrajectories) { const int kTrajectoryId[] = {8, 5}; const std::array kSensorId = {{"my_points", "some_imu"}}; std::vector input_data; // Send each sensor_id once to establish a common start time. input_data.push_back(CollatorInput::CreateTimedPointCloudData( kTrajectoryId[0], kSensorId[0], 0)); input_data.push_back( CollatorInput::CreateImuData(kTrajectoryId[0], kSensorId[1], 0)); input_data.push_back(CollatorInput::CreateTimedPointCloudData( kTrajectoryId[1], kSensorId[0], 0)); input_data.push_back( CollatorInput::CreateImuData(kTrajectoryId[1], kSensorId[1], 0)); input_data.push_back(CollatorInput::CreateTimedPointCloudData( kTrajectoryId[0], kSensorId[0], 100)); input_data.push_back( CollatorInput::CreateImuData(kTrajectoryId[1], kSensorId[1], 200)); input_data.push_back( CollatorInput::CreateImuData(kTrajectoryId[0], kSensorId[1], 300)); input_data.push_back(CollatorInput::CreateTimedPointCloudData( kTrajectoryId[1], kSensorId[0], 400)); input_data.push_back(CollatorInput::CreateTimedPointCloudData( kTrajectoryId[1], kSensorId[0], 400)); input_data.push_back(CollatorInput::CreateTimedPointCloudData( kTrajectoryId[1], kSensorId[0], 500)); input_data.push_back( CollatorInput::CreateImuData(kTrajectoryId[1], kSensorId[1], 600)); std::vector received; Collator collator; collator.AddTrajectory( kTrajectoryId[0], absl::flat_hash_set(kSensorId.begin(), kSensorId.end()), [&received, kTrajectoryId](const std::string& sensor_id, std::unique_ptr data) { received.push_back(CollatorOutput(kTrajectoryId[0], data->GetSensorId(), data->GetTime())); }); collator.AddTrajectory( kTrajectoryId[1], absl::flat_hash_set(kSensorId.begin(), kSensorId.end()), [&received, kTrajectoryId](const std::string& sensor_id, std::unique_ptr data) { received.push_back(CollatorOutput(kTrajectoryId[1], data->GetSensorId(), data->GetTime())); }); input_data[0].MoveToCollator(&collator); input_data[1].MoveToCollator(&collator); input_data[2].MoveToCollator(&collator); input_data[3].MoveToCollator(&collator); input_data[4].MoveToCollator(&collator); input_data[6].MoveToCollator(&collator); EXPECT_EQ(kTrajectoryId[1], collator.GetBlockingTrajectoryId().value()); input_data[7].MoveToCollator(&collator); input_data[8].MoveToCollator(&collator); EXPECT_EQ(kTrajectoryId[1], collator.GetBlockingTrajectoryId().value()); input_data[5].MoveToCollator(&collator); EXPECT_EQ(kTrajectoryId[0], collator.GetBlockingTrajectoryId().value()); input_data[10].MoveToCollator(&collator); input_data[9].MoveToCollator(&collator); EXPECT_EQ(kTrajectoryId[0], collator.GetBlockingTrajectoryId().value()); ASSERT_EQ(5, received.size()); EXPECT_EQ(input_data[4].expected_output, received[4]); collator.FinishTrajectory(kTrajectoryId[0]); collator.FinishTrajectory(kTrajectoryId[1]); collator.Flush(); ASSERT_EQ(input_data.size(), received.size()); for (size_t i = 4; i < input_data.size(); ++i) { EXPECT_EQ(input_data[i].expected_output, received[i]); } } } // namespace } // namespace sensor } // namespace cartographer