/* * Copyright 2018 The Cartographer Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "cartographer/mapping/internal/range_data_collator.h" #include #include "absl/memory/memory.h" #include "cartographer/mapping/internal/local_slam_result_data.h" #include "glog/logging.h" namespace cartographer { namespace mapping { constexpr float RangeDataCollator::kDefaultIntensityValue; /** * @brief 多个雷达数据的时间同步 * * @param[in] sensor_id 雷达数据的话题 * @param[in] timed_point_cloud_data 雷达数据 * @return sensor::TimedPointCloudOriginData 根据时间处理之后的数据 */ sensor::TimedPointCloudOriginData RangeDataCollator::AddRangeData( const std::string& sensor_id, sensor::TimedPointCloudData timed_point_cloud_data) { // 第一次拷贝 CHECK_NE(expected_sensor_ids_.count(sensor_id), 0); // 从sensor_bridge传过来的数据的intensities为空 //。。。timed_point_cloud_data.intensities.resize( //。。。 timed_point_cloud_data.ranges.size(), kDefaultIntensityValue); // TODO(gaschler): These two cases can probably be one. // 如果同话题的点云, 还有没处理的, 就先处同步没处理的点云, 将当前点云保存 if (id_to_pending_data_.count(sensor_id) != 0) { // current_end_为上一次时间同步的结束时间 // current_start_为本次时间同步的开始时间 current_start_ = current_end_; // When we have two messages of the same sensor, move forward the older of // the two (do not send out current). // 本次时间同步的结束时间为这帧点云数据的结束时间 current_end_ = id_to_pending_data_.at(sensor_id).time; auto result = CropAndMerge(); // 保存当前点云 id_to_pending_data_.emplace(sensor_id, std::move(timed_point_cloud_data)); return result; } // 先将当前点云添加到 等待时间同步的map中 id_to_pending_data_.emplace(sensor_id, std::move(timed_point_cloud_data)); // 等到range数据的话题都到来之后再进行处理 if (expected_sensor_ids_.size() != id_to_pending_data_.size()) { return {}; } current_start_ = current_end_; // We have messages from all sensors, move forward to oldest. common::Time oldest_timestamp = common::Time::max(); // 找到所有传感器数据中最早的时间戳(点云最后一个点的时间) for (const auto& pair : id_to_pending_data_) { oldest_timestamp = std::min(oldest_timestamp, pair.second.time); } // current_end_是本次时间同步的结束时间 // 是待时间同步map中的 所有点云中最早的时间戳 current_end_ = oldest_timestamp; return CropAndMerge(); } // 对时间段内的数据进行截取与合并, 返回时间同步后的点云 sensor::TimedPointCloudOriginData RangeDataCollator::CropAndMerge() { sensor::TimedPointCloudOriginData result{current_end_, {}, {}}; bool warned_for_dropped_points = false; // 遍历所有的传感器话题 for (auto it = id_to_pending_data_.begin(); it != id_to_pending_data_.end();) { // 获取数据的引用 sensor::TimedPointCloudData& data = it->second; const sensor::TimedPointCloud& ranges = it->second.ranges; const std::vector& intensities = it->second.intensities; // 找到点云中 最后一个时间戳小于current_start_的点的索引 auto overlap_begin = ranges.begin(); while (overlap_begin < ranges.end() && data.time + common::FromSeconds((*overlap_begin).time) < current_start_) { ++overlap_begin; } // 找到点云中 最后一个时间戳小于等于current_end_的点的索引 auto overlap_end = overlap_begin; while (overlap_end < ranges.end() && data.time + common::FromSeconds((*overlap_end).time) <= current_end_) { ++overlap_end; } // 丢弃点云中时间比起始时间早的点, 每执行一下CropAndMerge()打印一次log if (ranges.begin() < overlap_begin && !warned_for_dropped_points) { LOG(WARNING) << "Dropped " << std::distance(ranges.begin(), overlap_begin) << " earlier points."; warned_for_dropped_points = true; } // Copy overlapping range. if (overlap_begin < overlap_end) { // 获取下个点云的index, 即当前vector的个数 std::size_t origin_index = result.origins.size(); result.origins.push_back(data.origin); // 插入原点坐标 // 获取此传感器时间与集合时间戳的误差, const float time_correction = static_cast(common::ToSeconds(data.time - current_end_)); auto intensities_overlap_it = intensities.begin() + (overlap_begin - ranges.begin()); // reserve() 在预留空间改变时, 会将之前的数据拷贝到新的内存中 result.ranges.reserve(result.ranges.size() + std::distance(overlap_begin, overlap_end)); // 填充数据 for (auto overlap_it = overlap_begin; overlap_it != overlap_end; ++overlap_it, ++intensities_overlap_it) { sensor::TimedPointCloudOriginData::RangeMeasurement point{ *overlap_it, *intensities_overlap_it, origin_index}; // current_end_ + point_time[3]_after == in_timestamp + // point_time[3]_before // 针对每个点时间戳进行修正, 让最后一个点的时间为0 point.point_time.time += time_correction; result.ranges.push_back(point); } // end for } // end if // Drop buffered points until overlap_end. // 如果点云每个点都用了, 则可将这个数据进行删除 if (overlap_end == ranges.end()) { it = id_to_pending_data_.erase(it); } // 如果一个点都没用, 就先放这, 看下一个数据 else if (overlap_end == ranges.begin()) { ++it; } // 用了一部分的点 else { const auto intensities_overlap_end = intensities.begin() + (overlap_end - ranges.begin()); // 将用了的点删除, 这里的赋值是拷贝 data = sensor::TimedPointCloudData{ data.time, data.origin, sensor::TimedPointCloud(overlap_end, ranges.end()), std::vector(intensities_overlap_end, intensities.end())}; ++it; } } // end for // 对各传感器的点云 按照每个点的时间从小到大进行排序 std::sort(result.ranges.begin(), result.ranges.end(), [](const sensor::TimedPointCloudOriginData::RangeMeasurement& a, const sensor::TimedPointCloudOriginData::RangeMeasurement& b) { return a.point_time.time < b.point_time.time; }); return result; } } // namespace mapping } // namespace cartographer