liyin_code/models/stylegan3/model_3.py

530 lines
27 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Generator architecture from the paper
"Alias-Free Generative Adversarial Networks"."""
import numpy as np
import scipy.signal
import scipy.optimize
import torch
from torch_utils import misc
from torch_utils import persistence
from torch_utils.ops import conv2d_gradfix
from torch_utils.ops import filtered_lrelu
from torch_utils.ops import bias_act
#----------------------------------------------------------------------------
@misc.profiled_function
def modulated_conv2d(
x, # Input tensor: [batch_size, in_channels, in_height, in_width]
w, # Weight tensor: [out_channels, in_channels, kernel_height, kernel_width]
s, # Style tensor: [batch_size, in_channels]
demodulate = True, # Apply weight demodulation?
padding = 0, # Padding: int or [padH, padW]
input_gain = None, # Optional scale factors for the input channels: [], [in_channels], or [batch_size, in_channels]
):
with misc.suppress_tracer_warnings(): # this value will be treated as a constant
batch_size = int(x.shape[0])
out_channels, in_channels, kh, kw = w.shape
misc.assert_shape(w, [out_channels, in_channels, kh, kw]) # [OIkk]
misc.assert_shape(x, [batch_size, in_channels, None, None]) # [NIHW]
misc.assert_shape(s, [batch_size, in_channels]) # [NI]
# Pre-normalize inputs.
if demodulate:
w = w * w.square().mean([1,2,3], keepdim=True).rsqrt()
s = s * s.square().mean().rsqrt()
# Modulate weights.
w = w.unsqueeze(0) # [NOIkk]
w = w * s.unsqueeze(1).unsqueeze(3).unsqueeze(4) # [NOIkk]
# Demodulate weights.
if demodulate:
dcoefs = (w.square().sum(dim=[2,3,4]) + 1e-8).rsqrt() # [NO]
w = w * dcoefs.unsqueeze(2).unsqueeze(3).unsqueeze(4) # [NOIkk]
# Apply input scaling.
if input_gain is not None:
input_gain = input_gain.expand(batch_size, in_channels) # [NI]
w = w * input_gain.unsqueeze(1).unsqueeze(3).unsqueeze(4) # [NOIkk]
# Execute as one fused op using grouped convolution.
x = x.reshape(1, -1, *x.shape[2:])
w = w.reshape(-1, in_channels, kh, kw)
x = conv2d_gradfix.conv2d(input=x, weight=w.to(x.dtype), padding=padding, groups=batch_size)
x = x.reshape(batch_size, -1, *x.shape[2:])
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class FullyConnectedLayer(torch.nn.Module):
def __init__(self,
in_features, # Number of input features.
out_features, # Number of output features.
activation = 'linear', # Activation function: 'relu', 'lrelu', etc.
bias = True, # Apply additive bias before the activation function?
lr_multiplier = 1, # Learning rate multiplier.
weight_init = 1, # Initial standard deviation of the weight tensor.
bias_init = 0, # Initial value of the additive bias.
):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.activation = activation
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) * (weight_init / lr_multiplier))
bias_init = np.broadcast_to(np.asarray(bias_init, dtype=np.float32), [out_features])
self.bias = torch.nn.Parameter(torch.from_numpy(bias_init / lr_multiplier)) if bias else None
self.weight_gain = lr_multiplier / np.sqrt(in_features)
self.bias_gain = lr_multiplier
def forward(self, x):
w = self.weight.to(x.dtype) * self.weight_gain
b = self.bias
if b is not None:
b = b.to(x.dtype)
if self.bias_gain != 1:
b = b * self.bias_gain
if self.activation == 'linear' and b is not None:
x = torch.addmm(b.unsqueeze(0), x, w.t())
else:
x = x.matmul(w.t())
x = bias_act.bias_act(x, b, act=self.activation)
return x
def extra_repr(self):
return f'in_features={self.in_features:d}, out_features={self.out_features:d}, activation={self.activation:s}'
#----------------------------------------------------------------------------
@persistence.persistent_class
class MappingNetwork(torch.nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality.
c_dim, # Conditioning label (C) dimensionality, 0 = no labels.
w_dim, # Intermediate latent (W) dimensionality.
num_ws, # Number of intermediate latents to output.
num_layers = 2, # Number of mapping layers.
lr_multiplier = 0.01, # Learning rate multiplier for the mapping layers.
w_avg_beta = 0.998, # Decay for tracking the moving average of W during training.
):
super().__init__()
self.z_dim = z_dim
self.c_dim = c_dim
self.w_dim = w_dim
self.num_ws = num_ws
self.num_layers = num_layers
self.w_avg_beta = w_avg_beta
# Construct layers.
self.embed = FullyConnectedLayer(self.c_dim, self.w_dim) if self.c_dim > 0 else None
features = [self.z_dim + (self.w_dim if self.c_dim > 0 else 0)] + [self.w_dim] * self.num_layers
for idx, in_features, out_features in zip(range(num_layers), features[:-1], features[1:]):
layer = FullyConnectedLayer(in_features, out_features, activation='lrelu', lr_multiplier=lr_multiplier)
setattr(self, f'fc{idx}', layer)
self.register_buffer('w_avg', torch.zeros([w_dim]))
def forward(self, z, c=0, truncation_psi=1, truncation_cutoff=None, update_emas=False):
#将传入的z由list改为tensor 好像改得不对,还是别改把
# z = torch.tensor( [item.cpu().detach().numpy() for item in z] )
misc.assert_shape(z, [None, self.z_dim])
if truncation_cutoff is None:
truncation_cutoff = self.num_ws
# Embed, normalize, and concatenate inputs.
x = z.to(torch.float32)
x = x * (x.square().mean(1, keepdim=True) + 1e-8).rsqrt()
if self.c_dim > 0:
misc.assert_shape(c, [None, self.c_dim])
y = self.embed(c.to(torch.float32))
y = y * (y.square().mean(1, keepdim=True) + 1e-8).rsqrt()
x = torch.cat([x, y], dim=1) if x is not None else y
# Execute layers.
for idx in range(self.num_layers):
x = getattr(self, f'fc{idx}')(x)
# Update moving average of W.
if update_emas:
self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta))
# Broadcast and apply truncation.
x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
if truncation_psi != 1:
x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi)
return x
def extra_repr(self):
return f'z_dim={self.z_dim:d}, c_dim={self.c_dim:d}, w_dim={self.w_dim:d}, num_ws={self.num_ws:d}'
#----------------------------------------------------------------------------
@persistence.persistent_class
class SynthesisInput(torch.nn.Module):
def __init__(self,
w_dim, # Intermediate latent (W) dimensionality.
channels, # Number of output channels.
size, # Output spatial size: int or [width, height].
sampling_rate, # Output sampling rate.
bandwidth, # Output bandwidth.
):
super().__init__()
self.w_dim = w_dim
self.channels = channels
self.size = np.broadcast_to(np.asarray(size), [2])
self.sampling_rate = sampling_rate
self.bandwidth = bandwidth
# Draw random frequencies from uniform 2D disc.
freqs = torch.randn([self.channels, 2])
radii = freqs.square().sum(dim=1, keepdim=True).sqrt()
freqs /= radii * radii.square().exp().pow(0.25)
freqs *= bandwidth
phases = torch.rand([self.channels]) - 0.5
# Setup parameters and buffers.
self.weight = torch.nn.Parameter(torch.randn([self.channels, self.channels]))
self.affine = FullyConnectedLayer(w_dim, 4, weight_init=0, bias_init=[1,0,0,0])
self.register_buffer('transform', torch.eye(3, 3)) # User-specified inverse transform wrt. resulting image.
self.register_buffer('freqs', freqs)
self.register_buffer('phases', phases)
def forward(self, w):
# Introduce batch dimension.
transforms = self.transform.unsqueeze(0) # [batch, row, col]
freqs = self.freqs.unsqueeze(0) # [batch, channel, xy]
phases = self.phases.unsqueeze(0) # [batch, channel]
# Apply learned transformation.
t = self.affine(w) # t = (r_c, r_s, t_x, t_y)
t = t / t[:, :2].norm(dim=1, keepdim=True) # t' = (r'_c, r'_s, t'_x, t'_y)
m_r = torch.eye(3, device=w.device).unsqueeze(0).repeat([w.shape[0], 1, 1]) # Inverse rotation wrt. resulting image.
m_r[:, 0, 0] = t[:, 0] # r'_c
m_r[:, 0, 1] = -t[:, 1] # r'_s
m_r[:, 1, 0] = t[:, 1] # r'_s
m_r[:, 1, 1] = t[:, 0] # r'_c
m_t = torch.eye(3, device=w.device).unsqueeze(0).repeat([w.shape[0], 1, 1]) # Inverse translation wrt. resulting image.
m_t[:, 0, 2] = -t[:, 2] # t'_x
m_t[:, 1, 2] = -t[:, 3] # t'_y
transforms = m_r @ m_t @ transforms # First rotate resulting image, then translate, and finally apply user-specified transform.
# Transform frequencies.
phases = phases + (freqs @ transforms[:, :2, 2:]).squeeze(2)
freqs = freqs @ transforms[:, :2, :2]
# Dampen out-of-band frequencies that may occur due to the user-specified transform.
amplitudes = (1 - (freqs.norm(dim=2) - self.bandwidth) / (self.sampling_rate / 2 - self.bandwidth)).clamp(0, 1)
# Construct sampling grid.
theta = torch.eye(2, 3, device=w.device)
theta[0, 0] = 0.5 * self.size[0] / self.sampling_rate
theta[1, 1] = 0.5 * self.size[1] / self.sampling_rate
grids = torch.nn.functional.affine_grid(theta.unsqueeze(0), [1, 1, self.size[1], self.size[0]], align_corners=False)
# Compute Fourier features.
x = (grids.unsqueeze(3) @ freqs.permute(0, 2, 1).unsqueeze(1).unsqueeze(2)).squeeze(3) # [batch, height, width, channel]
x = x + phases.unsqueeze(1).unsqueeze(2)
x = torch.sin(x * (np.pi * 2))
x = x * amplitudes.unsqueeze(1).unsqueeze(2)
# Apply trainable mapping.
weight = self.weight / np.sqrt(self.channels)
x = x @ weight.t()
# Ensure correct shape.
x = x.permute(0, 3, 1, 2) # [batch, channel, height, width]
misc.assert_shape(x, [w.shape[0], self.channels, int(self.size[1]), int(self.size[0])])
return x
def extra_repr(self):
return '\n'.join([
f'w_dim={self.w_dim:d}, channels={self.channels:d}, size={list(self.size)},',
f'sampling_rate={self.sampling_rate:g}, bandwidth={self.bandwidth:g}'])
#----------------------------------------------------------------------------
@persistence.persistent_class
class SynthesisLayer(torch.nn.Module):
def __init__(self,
w_dim, # Intermediate latent (W) dimensionality.
is_torgb, # Is this the final ToRGB layer?
is_critically_sampled, # Does this layer use critical sampling?
use_fp16, # Does this layer use FP16?
# Input & output specifications.
in_channels, # Number of input channels.
out_channels, # Number of output channels.
in_size, # Input spatial size: int or [width, height].
out_size, # Output spatial size: int or [width, height].
in_sampling_rate, # Input sampling rate (s).
out_sampling_rate, # Output sampling rate (s).
in_cutoff, # Input cutoff frequency (f_c).
out_cutoff, # Output cutoff frequency (f_c).
in_half_width, # Input transition band half-width (f_h).
out_half_width, # Output Transition band half-width (f_h).
# Hyperparameters.
conv_kernel = 3, # Convolution kernel size. Ignored for final the ToRGB layer.
filter_size = 6, # Low-pass filter size relative to the lower resolution when up/downsampling.
lrelu_upsampling = 2, # Relative sampling rate for leaky ReLU. Ignored for final the ToRGB layer.
use_radial_filters = False, # Use radially symmetric downsampling filter? Ignored for critically sampled layers.
conv_clamp = 256, # Clamp the output to [-X, +X], None = disable clamping.
magnitude_ema_beta = 0.999, # Decay rate for the moving average of input magnitudes.
):
super().__init__()
self.w_dim = w_dim
self.is_torgb = is_torgb
self.is_critically_sampled = is_critically_sampled
self.use_fp16 = use_fp16
self.in_channels = in_channels
self.out_channels = out_channels
self.in_size = np.broadcast_to(np.asarray(in_size), [2])
self.out_size = np.broadcast_to(np.asarray(out_size), [2])
self.in_sampling_rate = in_sampling_rate
self.out_sampling_rate = out_sampling_rate
self.tmp_sampling_rate = max(in_sampling_rate, out_sampling_rate) * (1 if is_torgb else lrelu_upsampling)
self.in_cutoff = in_cutoff
self.out_cutoff = out_cutoff
self.in_half_width = in_half_width
self.out_half_width = out_half_width
self.conv_kernel = 1 if is_torgb else conv_kernel
self.conv_clamp = conv_clamp
self.magnitude_ema_beta = magnitude_ema_beta
# Setup parameters and buffers.
self.affine = FullyConnectedLayer(self.w_dim, self.in_channels, bias_init=1)
self.weight = torch.nn.Parameter(torch.randn([self.out_channels, self.in_channels, self.conv_kernel, self.conv_kernel]))
self.bias = torch.nn.Parameter(torch.zeros([self.out_channels]))
self.register_buffer('magnitude_ema', torch.ones([]))
# Design upsampling filter.
self.up_factor = int(np.rint(self.tmp_sampling_rate / self.in_sampling_rate))
assert self.in_sampling_rate * self.up_factor == self.tmp_sampling_rate
self.up_taps = filter_size * self.up_factor if self.up_factor > 1 and not self.is_torgb else 1
self.register_buffer('up_filter', self.design_lowpass_filter(
numtaps=self.up_taps, cutoff=self.in_cutoff, width=self.in_half_width*2, fs=self.tmp_sampling_rate))
# Design downsampling filter.
self.down_factor = int(np.rint(self.tmp_sampling_rate / self.out_sampling_rate))
assert self.out_sampling_rate * self.down_factor == self.tmp_sampling_rate
self.down_taps = filter_size * self.down_factor if self.down_factor > 1 and not self.is_torgb else 1
self.down_radial = use_radial_filters and not self.is_critically_sampled
self.register_buffer('down_filter', self.design_lowpass_filter(
numtaps=self.down_taps, cutoff=self.out_cutoff, width=self.out_half_width*2, fs=self.tmp_sampling_rate, radial=self.down_radial))
# Compute padding.
pad_total = (self.out_size - 1) * self.down_factor + 1 # Desired output size before downsampling.
pad_total -= (self.in_size + self.conv_kernel - 1) * self.up_factor # Input size after upsampling.
pad_total += self.up_taps + self.down_taps - 2 # Size reduction caused by the filters.
pad_lo = (pad_total + self.up_factor) // 2 # Shift sample locations according to the symmetric interpretation (Appendix C.3).
pad_hi = pad_total - pad_lo
self.padding = [int(pad_lo[0]), int(pad_hi[0]), int(pad_lo[1]), int(pad_hi[1])]
def forward(self, x, w, noise_mode='random', force_fp32=False, update_emas=False):
assert noise_mode in ['random', 'const', 'none'] # unused
misc.assert_shape(x, [None, self.in_channels, int(self.in_size[1]), int(self.in_size[0])])
misc.assert_shape(w, [x.shape[0], self.w_dim])
# Track input magnitude.
if update_emas:
with torch.autograd.profiler.record_function('update_magnitude_ema'):
magnitude_cur = x.detach().to(torch.float32).square().mean()
self.magnitude_ema.copy_(magnitude_cur.lerp(self.magnitude_ema, self.magnitude_ema_beta))
input_gain = self.magnitude_ema.rsqrt()
# Execute affine layer.
styles = self.affine(w)
if self.is_torgb:
weight_gain = 1 / np.sqrt(self.in_channels * (self.conv_kernel ** 2))
styles = styles * weight_gain
# Execute modulated conv2d.
dtype = torch.float16 if (self.use_fp16 and not force_fp32 and x.device.type == 'cuda') else torch.float32
x = modulated_conv2d(x=x.to(dtype), w=self.weight, s=styles,
padding=self.conv_kernel-1, demodulate=(not self.is_torgb), input_gain=input_gain)
# Execute bias, filtered leaky ReLU, and clamping.
gain = 1 if self.is_torgb else np.sqrt(2)
slope = 1 if self.is_torgb else 0.2
x = filtered_lrelu.filtered_lrelu(x=x, fu=self.up_filter, fd=self.down_filter, b=self.bias.to(x.dtype),
up=self.up_factor, down=self.down_factor, padding=self.padding, gain=gain, slope=slope, clamp=self.conv_clamp)
# Ensure correct shape and dtype.
misc.assert_shape(x, [None, self.out_channels, int(self.out_size[1]), int(self.out_size[0])])
assert x.dtype == dtype
return x
@staticmethod
def design_lowpass_filter(numtaps, cutoff, width, fs, radial=False):
assert numtaps >= 1
# Identity filter.
if numtaps == 1:
return None
# Separable Kaiser low-pass filter.
if not radial:
f = scipy.signal.firwin(numtaps=numtaps, cutoff=cutoff, width=width, fs=fs)
return torch.as_tensor(f, dtype=torch.float32)
# Radially symmetric jinc-based filter.
x = (np.arange(numtaps) - (numtaps - 1) / 2) / fs
r = np.hypot(*np.meshgrid(x, x))
f = scipy.special.j1(2 * cutoff * (np.pi * r)) / (np.pi * r)
beta = scipy.signal.kaiser_beta(scipy.signal.kaiser_atten(numtaps, width / (fs / 2)))
w = np.kaiser(numtaps, beta)
f *= np.outer(w, w)
f /= np.sum(f)
return torch.as_tensor(f, dtype=torch.float32)
def extra_repr(self):
return '\n'.join([
f'w_dim={self.w_dim:d}, is_torgb={self.is_torgb},',
f'is_critically_sampled={self.is_critically_sampled}, use_fp16={self.use_fp16},',
f'in_sampling_rate={self.in_sampling_rate:g}, out_sampling_rate={self.out_sampling_rate:g},',
f'in_cutoff={self.in_cutoff:g}, out_cutoff={self.out_cutoff:g},',
f'in_half_width={self.in_half_width:g}, out_half_width={self.out_half_width:g},',
f'in_size={list(self.in_size)}, out_size={list(self.out_size)},',
f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}'])
#----------------------------------------------------------------------------
@persistence.persistent_class
class SynthesisNetwork(torch.nn.Module):
def __init__(self,
w_dim, # Intermediate latent (W) dimensionality. 512
img_resolution, # Output image resolution. 1024
img_channels, # Number of color channels. 3
channel_base = 32768, # Overall multiplier for the number of channels.通道总体倍增因子
channel_max = 512, # Maximum number of channels in any layer.
num_layers = 14, # Total number of layers, excluding Fourier features and ToRGB.
num_critical = 2, # Number of critically sampled layers at the end.
first_cutoff = 2, # Cutoff frequency of the first layer (f_{c,0}).
first_stopband = 2**2.1, # Minimum stopband of the first layer (f_{t,0}).
last_stopband_rel = 2**0.3, # Minimum stopband of the last layer, expressed relative to the cutoff.
margin_size = 10, # Number of additional pixels outside the image.
output_scale = 0.25, # Scale factor for the output image.
num_fp16_res = 4, # Use FP16 for the N highest resolutions.
**layer_kwargs, # Arguments for SynthesisLayer.
):
super().__init__()
self.w_dim = w_dim
self.num_ws = num_layers + 2
self.img_resolution = img_resolution
self.img_channels = img_channels
self.num_layers = num_layers
self.num_critical = num_critical
self.margin_size = margin_size
self.output_scale = output_scale
self.num_fp16_res = num_fp16_res
# Geometric progression of layer cutoffs and min. stopbands.
last_cutoff = self.img_resolution / 2 # f_{c,N}
last_stopband = last_cutoff * last_stopband_rel # f_{t,N}
exponents = np.minimum(np.arange(self.num_layers + 1) / (self.num_layers - self.num_critical), 1)
cutoffs = first_cutoff * (last_cutoff / first_cutoff) ** exponents # f_c[i] [ 2. 3.1748021 5.0396842 8. 12.69920842, 20.1587368 32. 50.79683366 80.63494719 128., 203.18733465 322.53978877 512. 512. 512. ]
stopbands = first_stopband * (last_stopband / first_stopband) ** exponents # f_t[i]
# Compute remaining layer parameters.
sampling_rates = np.exp2(np.ceil(np.log2(np.minimum(stopbands * 2, self.img_resolution)))) # s[i]
half_widths = np.maximum(stopbands, sampling_rates / 2) - cutoffs # f_h[i]
sizes = sampling_rates + self.margin_size * 2
sizes[-2:] = self.img_resolution
channels = np.rint(np.minimum((channel_base / 2) / cutoffs, channel_max))
channels[-1] = self.img_channels
# Construct layers.
self.input = SynthesisInput(
w_dim=self.w_dim, channels=int(channels[0]), size=int(sizes[0]), #sizes:[ 36. 36. 52. 52. 84. 148. 148. 276. 276. 532. 1044. 1044., 1044. 1024. 1024.]
sampling_rate=sampling_rates[0], bandwidth=cutoffs[0]) #sampling_rates [ 16. 16. 32. 32. 64. 128. 128. 256. 256. 512. 1024. 1024., 1024. 1024. 1024.]
self.layer_names = []
for idx in range(self.num_layers + 1):
prev = max(idx - 1, 0)
is_torgb = (idx == self.num_layers)
is_critically_sampled = (idx >= self.num_layers - self.num_critical)
use_fp16 = (sampling_rates[idx] * (2 ** self.num_fp16_res) > self.img_resolution)
layer = SynthesisLayer(
w_dim=self.w_dim, is_torgb=is_torgb, is_critically_sampled=is_critically_sampled, use_fp16=use_fp16,
in_channels=int(channels[prev]), out_channels= int(channels[idx]),
in_size=int(sizes[prev]), out_size=int(sizes[idx]),
in_sampling_rate=int(sampling_rates[prev]), out_sampling_rate=int(sampling_rates[idx]),
in_cutoff=cutoffs[prev], out_cutoff=cutoffs[idx],
in_half_width=half_widths[prev], out_half_width=half_widths[idx],
**layer_kwargs)
name = f'L{idx}_{layer.out_size[0]}_{layer.out_channels}'
setattr(self, name, layer)
self.layer_names.append(name)
def forward(self, ws, **layer_kwargs):
misc.assert_shape(ws, [None, self.num_ws, self.w_dim])
ws = ws.to(torch.float32).unbind(dim=1)
# Execute layers.
x = self.input(ws[0])
for name, w in zip(self.layer_names, ws[1:]):
x = getattr(self, name)(x, w, **layer_kwargs)
if self.output_scale != 1:
x = x * self.output_scale
# Ensure correct shape and dtype.
misc.assert_shape(x, [None, self.img_channels, self.img_resolution, self.img_resolution])
x = x.to(torch.float32)
return x
def extra_repr(self):
return '\n'.join([
f'w_dim={self.w_dim:d}, num_ws={self.num_ws:d},',
f'img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d},',
f'num_layers={self.num_layers:d}, num_critical={self.num_critical:d},',
f'margin_size={self.margin_size:d}, num_fp16_res={self.num_fp16_res:d}'])
#----------------------------------------------------------------------------
@persistence.persistent_class
class Generator(torch.nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality.
c_dim, # Conditioning label (C) dimensionality.
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output resolution.
img_channels, # Number of output color channels.
mapping_kwargs = {}, # Arguments for MappingNetwork.
**synthesis_kwargs, # Arguments for SynthesisNetwork.
):
super().__init__()
self.z_dim = z_dim #512
self.c_dim = c_dim #0
self.w_dim = w_dim #512
self.img_resolution = img_resolution
self.img_channels = img_channels
self.synthesis = SynthesisNetwork(w_dim=w_dim, img_resolution=img_resolution, img_channels=img_channels, **synthesis_kwargs)
self.num_ws = self.synthesis.num_ws #16
self.mapping = MappingNetwork(z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs)
# def mean_latent(self, n_latent):
# latent_in = torch.randn(
# #此处的style_dim应与w_dim对应
# n_latent, self.w_dim, device=self.synthesis.input.weight.device
# )
# latent = self.synthesis.styles(latent_in).mean(0, keepdim=True)
#
# return latent
def forward(self, z, c=None, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
# print("-----------------------------------")
# print(z)
# print("-----------------------------------")
ws = self.mapping(z, c = None, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
img = self.synthesis(ws, update_emas=update_emas, **synthesis_kwargs)
return img
#----------------------------------------------------------------------------