41 lines
1.3 KiB
Python
41 lines
1.3 KiB
Python
import torch
|
|
from torch import nn
|
|
|
|
from models.facial_recognition.model_irse import Backbone
|
|
|
|
|
|
class IDLoss(nn.Module):
|
|
def __init__(self, opts):
|
|
super(IDLoss, self).__init__()
|
|
print('Loading ResNet ArcFace')
|
|
self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
|
|
self.facenet.load_state_dict(torch.load(opts.ir_se50_weights))
|
|
self.pool = torch.nn.AdaptiveAvgPool2d((256, 256))
|
|
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
|
|
self.facenet.eval()
|
|
self.facenet.cuda()
|
|
self.opts = opts
|
|
|
|
def extract_feats(self, x):
|
|
if x.shape[2] != 256:
|
|
x = self.pool(x)
|
|
x = x[:, :, 35:223, 32:220] # Crop interesting region
|
|
x = self.face_pool(x)
|
|
x_feats = self.facenet(x)
|
|
return x_feats
|
|
|
|
def forward(self, y_hat, y):
|
|
n_samples = y.shape[0]
|
|
y_feats = self.extract_feats(y) # Otherwise use the feature from there
|
|
y_hat_feats = self.extract_feats(y_hat)
|
|
y_feats = y_feats.detach()
|
|
loss = 0
|
|
sim_improvement = 0
|
|
count = 0
|
|
for i in range(n_samples):
|
|
diff_target = y_hat_feats[i].dot(y_feats[i])
|
|
loss += 1 - diff_target
|
|
count += 1
|
|
|
|
return loss / count, sim_improvement / count
|