commit 4f9296236a3cb46ccc1f9548ec6eba32eff8c906
Author: zhurui <274461951@qq.com>
Date: Thu Jul 4 17:06:52 2024 +0800
first commit
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000..2130995
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2021 Or Patashnik, Zongze Wu
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/README.md b/README.md
new file mode 100644
index 0000000..f04fbc6
--- /dev/null
+++ b/README.md
@@ -0,0 +1,287 @@
+# StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral)
+
+[Run this model on Replicate](https://replicate.ai/orpatashnik/styleclip)
+
+Optimization: [](http://colab.research.google.com/github/orpatashnik/StyleCLIP/blob/main/notebooks/optimization_playground.ipynb)
+Mapper: [](https://colab.research.google.com/github/orpatashnik/StyleCLIP/blob/main/notebooks/mapper_playground.ipynb)
+
+Global directions Torch: [](https://colab.research.google.com/github/orpatashnik/StyleCLIP/blob/main/notebooks/StyleCLIP_global_torch.ipynb)
+Global directions TF1: [](https://colab.research.google.com/github/orpatashnik/StyleCLIP/blob/main/notebooks/StyleCLIP_global.ipynb)
+
+
+
+
+
+Full Demo Video:
ICCV Video
+
+
+
+
+
+
+
+> **StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery**
+> Or Patashnik*, Zongze Wu*, Eli Shechtman, Daniel Cohen-Or, Dani Lischinski
+> *Equal contribution, ordered alphabetically
+> https://arxiv.org/abs/2103.17249
+>
+>**Abstract:** Inspired by the ability of StyleGAN to generate highly realistic
+images in a variety of domains, much recent work has
+focused on understanding how to use the latent spaces of
+StyleGAN to manipulate generated and real images. However,
+discovering semantically meaningful latent manipulations
+typically involves painstaking human examination of
+the many degrees of freedom, or an annotated collection
+of images for each desired manipulation. In this work, we
+explore leveraging the power of recently introduced Contrastive
+Language-Image Pre-training (CLIP) models in order
+to develop a text-based interface for StyleGAN image
+manipulation that does not require such manual effort. We
+first introduce an optimization scheme that utilizes a CLIP-based
+loss to modify an input latent vector in response to a
+user-provided text prompt. Next, we describe a latent mapper
+that infers a text-guided latent manipulation step for
+a given input image, allowing faster and more stable textbased
+manipulation. Finally, we present a method for mapping
+a text prompts to input-agnostic directions in StyleGAN’s
+style space, enabling interactive text-driven image
+manipulation. Extensive results and comparisons demonstrate
+the effectiveness of our approaches.
+
+
+## Description
+Official Implementation of StyleCLIP, a method to manipulate images using a driving text.
+Our method uses the generative power of a pretrained StyleGAN generator, and the visual-language power of CLIP.
+In the paper we present three methods:
+- Latent vector optimization.
+- Latent mapper, trained to manipulate latent vectors according to a specific text description.
+- Global directions in the StyleSpace.
+
+
+## Updates
+**31/10/2022** Add support for global direction with torch implementation
+
+**15/8/2021** Add support for StyleSpace in optimization and latent mapper methods
+
+**6/4/2021** Add mapper training and inference (including a jupyter notebook) code
+
+**6/4/2021** Add support for custom StyleGAN2 and StyleGAN2-ada models, and also custom images
+
+**2/4/2021** Add the global directions code (a local GUI and a colab notebook)
+
+**31/3/2021** Upload paper to arxiv, and video to YouTube
+
+**14/2/2021** Initial version
+
+## Setup (for all three methods)
+For all the methods described in the paper, is it required to have:
+- Anaconda
+- [CLIP](https://github.com/openai/CLIP)
+
+Specific requirements for each method are described in its section.
+To install CLIP please run the following commands:
+ ```shell script
+conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=
+pip install ftfy regex tqdm gdown
+pip install git+https://github.com/openai/CLIP.git
+```
+
+
+## Editing via Latent Vector Optimization
+
+### Setup
+
+Here, the code relies on the [Rosinality](https://github.com/rosinality/stylegan2-pytorch/) pytorch implementation of StyleGAN2.
+Some parts of the StyleGAN implementation were modified, so that the whole implementation is native pytorch.
+
+In addition to the requirements mentioned before, a pretrained StyleGAN2 generator will attempt to be downloaded, (or manually download from [here](https://drive.google.com/file/d/1EM87UquaoQmk17Q8d5kYIAHqu0dkYqdT/view?usp=sharing)).
+
+### Usage
+
+Given a textual description, one can both edit a given image, or generate a random image that best fits to the description.
+Both operations can be done through the `main.py` script, or the `optimization_playground.ipynb` notebook ([](http://colab.research.google.com/github/orpatashnik/StyleCLIP/blob/main/notebooks/optimization_playground.ipynb)).
+
+#### Editing
+To edit an image set `--mode=edit`. Editing can be done on both provided latent vector, and on a random latent vector from StyleGAN's latent space.
+It is recommended to adjust the `--l2_lambda` according to the desired edit.
+
+#### Generating Free-style Images
+To generate a free-style image set `--mode=free_generation`.
+
+## Editing via Latent Mapper
+Here, we provide the code for the latent mapper. The mapper is trained to learn *residuals* from a given latent vector, according to the driving text.
+The code for the mapper is in `mapper/`.
+
+### Setup
+As in the optimization, the code relies on [Rosinality](https://github.com/rosinality/stylegan2-pytorch/) pytorch implementation of StyleGAN2.
+In addition the the StyleGAN weights, it is neccessary to have weights for the facial recognition network used in the ID loss.
+The weights can be downloaded from [here](https://drive.google.com/file/d/1KW7bjndL3QG3sxBbZxreGHigcCCpsDgn/view?usp=sharing).
+
+The mapper is trained on latent vectors. It is recommended to train on *inverted real images*.
+To this end, we provide the CelebA-HQ that was inverted by e4e:
+[train set](https://drive.google.com/file/d/1gof8kYc_gDLUT4wQlmUdAtPnQIlCO26q/view?usp=sharing), [test set](https://drive.google.com/file/d/1j7RIfmrCoisxx3t-r-KC02Qc8barBecr/view?usp=sharing).
+
+### Usage
+
+#### Training
+- The main training script is placed in `mapper/scripts/train.py`.
+- Training arguments can be found at `mapper/options/train_options.py`.
+- Intermediate training results are saved to opts.exp_dir. This includes checkpoints, train outputs, and test outputs.
+Additionally, if you have tensorboard installed, you can visualize tensorboard logs in opts.exp_dir/logs.
+Note that
+- To resume a training, please provide `--checkpoint_path`.
+- `--description` is where you provide the driving text.
+- If you perform an edit that is not supposed to change "colors" in the image, it is recommended to use the flag `--no_fine_mapper`.
+
+Example for training a mapper for the moahwk hairstyle:
+```bash
+cd mapper
+python train.py --exp_dir ../results/mohawk_hairstyle --no_fine_mapper --description "mohawk hairstyle"
+```
+All configurations for the examples shown in the paper are provided there.
+
+#### Inference
+- The main inferece script is placed in `mapper/scripts/inference.py`.
+- Inference arguments can be found at `mapper/options/test_options.py`.
+- Adding the flag `--couple_outputs` will save image containing the input and output images side-by-side.
+
+Pretrained models for variuos edits are provided. Please refer to `utils.py` for the complete links list.
+
+We also provide a notebook for performing inference with the mapper Mapper notebook: [](https://colab.research.google.com/github/orpatashnik/StyleCLIP/blob/main/notebooks/mapper_playground.ipynb)
+
+## Editing via Global Direction
+
+Here we provide GUI for editing images with the global directions.
+We provide both a jupyter notebook [](https://colab.research.google.com/github/orpatashnik/StyleCLIP/blob/main/notebooks/StyleCLIP_global.ipynb),
+and the GUI used in the [video](https://www.youtube.com/watch?v=5icI0NgALnQ).
+For both, the linear direction are computed in **real time**.
+The code is located at `global_directions/`.
+
+
+### Setup
+Here, we rely on the [official](https://github.com/NVlabs/stylegan2) TensorFlow implementation of StyleGAN2.
+
+It is required to have TensorFlow, version 1.14 or 1.15 (`conda install -c anaconda tensorflow-gpu==1.14`).
+
+### Usage
+
+
+#### Local GUI
+
+To start the local GUI please run the following commands:
+
+```shell script
+cd global_directions
+
+# input dataset name
+dataset_name='ffhq'
+
+# pretrained StyleGAN2 model from standard [NVlabs implementation](https://github.com/NVlabs/stylegan2) will be download automatically.
+# pretrained StyleGAN2-ada model could be download from https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/ .
+# for custom StyleGAN2 or StyleGAN2-ada model, please place the model under ./StyleCLIP/global_directions/model/ folder.
+
+
+# input prepare data
+python GetCode.py --dataset_name $dataset_name --code_type 'w'
+python GetCode.py --dataset_name $dataset_name --code_type 's'
+python GetCode.py --dataset_name $dataset_name --code_type 's_mean_std'
+
+# preprocess (this may take a few hours).
+# we precompute the results for StyleGAN2 on ffhq, StyleGAN2-ada on afhqdog, afhqcat. For these model, we can skip the preprocess step.
+python SingleChannel.py --dataset_name $dataset_name
+
+# generated image to be manipulated
+# this operation will generate and replace the w_plu.npy and .jpg images in './data/dataset_name/' folder.
+# if you you want to keep the original data, please rename the original folder.
+# to use custom images, please use e4e encoder to generate latents.pt, and place it in './data/dataset_name/' folder, and add --real flag while running this function.
+# you may skip this step if you want to manipulate the real human faces we prepare in ./data/ffhq/ folder.
+python GetGUIData.py --dataset_name $dataset_name
+
+# interactively manipulation
+python PlayInteractively.py --dataset_name $dataset_name
+```
+
+As shown in the video, to edit an image it is requires to write a _neutral text_ and a _target text_.
+To operate the GUI, please do the following:
+- Maximize the window size
+- Double click on the left square to choose an image. The images are taken from `global_directions/data/ffhq`, and the corresponding latent vectors are in `global_directions/data/ffhq/w_plus.npy`.
+- Type a neutral text, then press enter
+- Modify the target text so that it will contain the target edit, then press enter.
+
+You can now play with:
+- *Manipulation strength* - positive values correspond to moving along the target direction.
+- *Disentanglement threshold* - large value means more disentangled edit, just a few channels will be manipulated so only the target attribute will change (for example, grey hair). Small value means less disentangled edit, a large number of channels will be manipulated, related attributes will also change (such as wrinkle, skin color, glasses).
+
+##### Examples:
+
+| Edit | Neutral Text | Target Text |
+| --- | --- | --- |
+| Smile | face | smiling face |
+| Gender | female face | male face |
+| Blonde hair | face with hair | face with blonde hair |
+| Hi-top fade | face with hair | face with Hi-top fade hair |
+| Blue eyes | face with eyes | face with blue eyes |
+
+More examples could be found in the [video](https://www.youtube.com/watch?v=5icI0NgALnQ) and in the paper.
+
+
+##### Pratice Tips:
+In the terminal, for every manipulation, the number of channels being manipulated is printed (the number is controlled by the attribute (neutral, target) and the disentanglement threshold).
+
+1. For color transformation, usually 10-20 channels is enough. For large structure change (for example, Hi-top fade), usually 100-200 channels are required.
+2. For an attribute (neutral, target), if you give a low disentanglement threshold, there are just few channels (<20) being manipulated, and usually it is not enough for performing the desired edit.
+
+
+#### Notebook
+Open the notebook in colab and run all the cells. In the last cell you can play with the image.
+
+`beta` corresponds to the *disentanglement threshold*, and `alpha` to the *manipulation strength*.
+
+After you set the desired set of parameters, please run again the last cell to generate the image.
+
+## Editing Examples
+
+In the following, we show some results obtained with our methods.
+All images are real, and were inverted into the StyleGAN's latent space using [e4e](https://github.com/omertov/encoder4editing).
+The driving text that was used for each edit appears below or above each image.
+
+#### Latent Optimization
+
+
+
+
+
+
+#### Latent Mapper
+
+
+
+#### Global Directions
+
+
+
+
+
+
+## Related Works
+
+The global directions we find for editing are direction in the _S Space_, which was introduced and analyzed in [StyleSpace](https://arxiv.org/abs/2011.12799) (Wu et al).
+
+To edit real images, we inverted them to the StyleGAN's latent space using [e4e](https://arxiv.org/abs/2102.02766) (Tov et al.).
+
+The code strcuture of the mapper is heavily based on [pSp](https://github.com/eladrich/pixel2style2pixel).
+
+## Citation
+
+If you use this code for your research, please cite our paper:
+
+```
+@InProceedings{Patashnik_2021_ICCV,
+ author = {Patashnik, Or and Wu, Zongze and Shechtman, Eli and Cohen-Or, Daniel and Lischinski, Dani},
+ title = {StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery},
+ booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
+ month = {October},
+ year = {2021},
+ pages = {2085-2094}
+}
+```
diff --git a/cog.yaml b/cog.yaml
new file mode 100644
index 0000000..dda2570
--- /dev/null
+++ b/cog.yaml
@@ -0,0 +1,34 @@
+build:
+ gpu: true
+ system_packages:
+ - libgl1-mesa-glx
+ - libglib2.0-0
+ - cmake
+ - zip
+ python_version: 3.7
+ python_packages:
+ - torch==1.7.1
+ - tensorflow==1.15.0
+ - torchvision==0.8.2
+ - torchaudio==0.7.2
+ - ftfy==5.9
+ - regex==2021.4.4
+ - tqdm==4.59.0
+ - requests==2.25.1
+ - matplotlib==3.4.1
+ - opencv-python==4.3.0.38
+ - dlib==19.18.0
+ - scipy==1.6.3
+ - "git+git://github.com/openai/CLIP.git@8a665a683d791ed3491fedadcb3c91878f9eb78d"
+ pre_install:
+ - "mkdir /content"
+ - "git clone https://github.com/omertov/encoder4editing.git /content/encoder4editing"
+ - "wget https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip"
+ - "unzip ninja-linux.zip -d /usr/local/bin/"
+ - "update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force"
+ - "wget -O /content/shape_predictor_68_face_landmarks.dat.bz2 http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2"
+ - "cd /content && bzip2 -dk shape_predictor_68_face_landmarks.dat.bz2"
+ - "echo > /content/encoder4editing/__init__.py"
+ - |
+ sed -i 's/img = PIL.Image.open(filepath)/img = PIL.Image.open(filepath).convert(\"RGB\")/' /content/encoder4editing/utils/alignment.py
+predict: cog_predict.py:Predictor
diff --git a/cog_predict.py b/cog_predict.py
new file mode 100644
index 0000000..2bbf6fb
--- /dev/null
+++ b/cog_predict.py
@@ -0,0 +1,196 @@
+import copy
+import os
+import pickle
+import sys
+import tempfile
+import time
+from argparse import Namespace
+from pathlib import Path
+
+import clip
+import cog
+import dlib
+import matplotlib.pyplot as plt
+import numpy as np
+import tensorflow as tf
+import torch
+import torchvision.transforms as transforms
+from PIL import Image
+
+sys.path.insert(0, "/content")
+sys.path.insert(0, "/content/encoder4editing")
+
+from encoder4editing.models.psp import pSp
+from encoder4editing.utils.alignment import align_face
+from encoder4editing.utils.common import tensor2im
+
+os.chdir("global_directions")
+sys.path.insert(0, ".")
+
+from dnnlib import tflib
+from manipulate import Manipulator
+from MapTS import GetBoundary, GetDt, GetFs
+
+class Predictor(cog.Predictor):
+ def setup(self):
+
+ print("starting setup")
+
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
+ self.model, self.preprocess = clip.load(
+ "ViT-B/32", device=self.device, jit=False
+ )
+
+ self.graph = tf.get_default_graph()
+ gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
+ self.sess = tf.Session(
+ graph=self.graph, config=tf.ConfigProto(gpu_options=gpu_options)
+ )
+
+ self.experiment_args = {"model_path": "e4e_ffhq_encode.pt"}
+ self.experiment_args["transform"] = transforms.Compose(
+ [
+ transforms.Resize((256, 256)),
+ transforms.ToTensor(),
+ transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
+ ]
+ )
+ self.resize_dims = (256, 256)
+
+ model_path = self.experiment_args["model_path"]
+
+ ckpt = torch.load(model_path, map_location="cpu")
+ opts = ckpt["opts"]
+ # pprint.pprint(opts) # Display full options used
+ # update the training options
+ opts["checkpoint_path"] = model_path
+ opts = Namespace(**opts)
+
+ self.net = pSp(opts)
+ self.net.eval()
+ self.net.cuda()
+
+ self.shape_predictor = dlib.shape_predictor(
+ "/content/shape_predictor_68_face_landmarks.dat"
+ )
+
+ with self.graph.as_default(), self.sess.as_default():
+ #tflib.init_tf()
+
+ self.M = Manipulator(dataset_name="ffhq", sess=self.sess)
+ self.fs3 = np.load("npy/ffhq/fs3.npy")
+ np.set_printoptions(suppress=True)
+
+ print("setup complete")
+
+ @cog.input("input", type=Path, help="Input image")
+ @cog.input("neutral", type=str, help="Neutral image description")
+ @cog.input("target", type=str, help="Target image description")
+ @cog.input(
+ "manipulation_strength",
+ type=float,
+ min=-10,
+ max=10,
+ default=4.1,
+ help="The higher the manipulation strength, the closer the generated image becomes to the target description. Negative values moves the generated image further from the target description",
+ )
+ @cog.input(
+ "disentanglement_threshold",
+ type=float,
+ min=0.08,
+ max=0.3,
+ default=0.15,
+ help="The higher the disentanglement threshold, the more specific the changes are to the target attribute. Lower values mean that broader changes are made to the input image",
+ )
+ def predict(
+ self,
+ input,
+ neutral,
+ target,
+ manipulation_strength,
+ disentanglement_threshold,
+ ):
+
+ # @title Align image
+ #original_image = Image.open(str(input))
+ #original_image = original_image.convert("RGB")
+ input_image = self.run_alignment(str(input))
+ #input_image = original_image
+ input_image = input_image.resize(self.resize_dims)
+
+ img_transforms = self.experiment_args["transform"]
+ transformed_image = img_transforms(input_image)
+
+ with torch.no_grad():
+ images, latents = self.run_on_batch(transformed_image.unsqueeze(0))
+ result_image, latent = images[0], latents[0]
+
+ print("latents", latents)
+
+ print(transformed_image.shape, result_image.shape)
+
+ w_plus = latents.cpu().detach().numpy()
+ with self.graph.as_default(), self.sess.as_default():
+ dlatents_loaded = self.M.W2S(w_plus)
+
+ #print("w_plus, dlatents_loaded", w_plus, dlatents_loaded)
+
+ img_index = 0
+ w_plus=latents.cpu().detach().numpy()
+ with self.graph.as_default(), self.sess.as_default():
+ dlatents_loaded=self.M.W2S(w_plus)
+
+ img_indexs=[img_index]
+ dlatent_tmp=[tmp[img_indexs] for tmp in dlatents_loaded]
+ with self.graph.as_default(), self.sess.as_default():
+ self.M.num_images = len(img_indexs)
+ self.M.alpha = [0]
+ self.M.manipulate_layers = [0]
+
+ with self.graph.as_default(), self.sess.as_default():
+ codes, out = self.M.EditOneC(0, dlatent_tmp)
+
+ original = Image.fromarray(out[0, 0]).resize((512, 512))
+ with self.graph.as_default(), self.sess.as_default():
+ self.M.manipulate_layers = None
+
+ classnames = [target, neutral]
+ dt = GetDt(classnames, self.model)
+
+ with self.graph.as_default(), self.sess.as_default():
+ self.M.alpha = [manipulation_strength]
+ boundary_tmp2, c = GetBoundary(
+ self.fs3, dt, self.M, threshold=disentanglement_threshold
+ )
+ codes = self.M.MSCode(dlatent_tmp, boundary_tmp2)
+ out = self.M.GenerateImg(codes)
+ generated = Image.fromarray(out[0, 0]) # .resize((512,512))
+
+ out_path = Path(tempfile.mkdtemp()) / "out.jpg"
+ generated.save(str(out_path))
+
+ return out_path
+
+ def run_alignment(self, image_path):
+ aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor)
+ print("Aligned image has shape: {}".format(aligned_image.size))
+ return aligned_image
+
+ def run_on_batch(self, inputs):
+ images, latents = self.net(
+ inputs.to("cuda").float(), randomize_noise=False, return_latents=True
+ )
+ return images, latents
+
+
+def concat_images(*images):
+ width = 0
+ for im in images:
+ width += im.width
+ height = max([im.height for im in images])
+ concat = Image.new("RGB", (width, height))
+ offset = 0
+ for im in images:
+ concat.paste(im, (offset, 0))
+ offset += im.width
+ return concat
diff --git a/criteria/__init__.py b/criteria/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/criteria/clip_loss.py b/criteria/clip_loss.py
new file mode 100644
index 0000000..18176ee
--- /dev/null
+++ b/criteria/clip_loss.py
@@ -0,0 +1,17 @@
+
+import torch
+import clip
+
+
+class CLIPLoss(torch.nn.Module):
+
+ def __init__(self, opts):
+ super(CLIPLoss, self).__init__()
+ self.model, self.preprocess = clip.load("ViT-B/32", device="cuda")
+ self.upsample = torch.nn.Upsample(scale_factor=7)
+ self.avg_pool = torch.nn.AvgPool2d(kernel_size=opts.stylegan_size // 32)
+
+ def forward(self, image, text):
+ image = self.avg_pool(self.upsample(image))
+ similarity = 1 - self.model(image, text)[0] / 100
+ return similarity
\ No newline at end of file
diff --git a/criteria/id_loss.py b/criteria/id_loss.py
new file mode 100644
index 0000000..2ca3501
--- /dev/null
+++ b/criteria/id_loss.py
@@ -0,0 +1,40 @@
+import torch
+from torch import nn
+
+from models.facial_recognition.model_irse import Backbone
+
+
+class IDLoss(nn.Module):
+ def __init__(self, opts):
+ super(IDLoss, self).__init__()
+ print('Loading ResNet ArcFace')
+ self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
+ self.facenet.load_state_dict(torch.load(opts.ir_se50_weights))
+ self.pool = torch.nn.AdaptiveAvgPool2d((256, 256))
+ self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
+ self.facenet.eval()
+ self.facenet.cuda()
+ self.opts = opts
+
+ def extract_feats(self, x):
+ if x.shape[2] != 256:
+ x = self.pool(x)
+ x = x[:, :, 35:223, 32:220] # Crop interesting region
+ x = self.face_pool(x)
+ x_feats = self.facenet(x)
+ return x_feats
+
+ def forward(self, y_hat, y):
+ n_samples = y.shape[0]
+ y_feats = self.extract_feats(y) # Otherwise use the feature from there
+ y_hat_feats = self.extract_feats(y_hat)
+ y_feats = y_feats.detach()
+ loss = 0
+ sim_improvement = 0
+ count = 0
+ for i in range(n_samples):
+ diff_target = y_hat_feats[i].dot(y_feats[i])
+ loss += 1 - diff_target
+ count += 1
+
+ return loss / count, sim_improvement / count
diff --git a/global_torch/SingleChannel.py b/global_torch/SingleChannel.py
new file mode 100644
index 0000000..54b40b3
--- /dev/null
+++ b/global_torch/SingleChannel.py
@@ -0,0 +1,127 @@
+
+
+
+import numpy as np
+import torch
+
+from PIL import Image
+import copy
+from manipulate import Manipulator
+import argparse
+
+import sys
+sys.path.append('/cs/labs/danix/wuzongze/Tansformer_Manipulation/CLIP/')
+import clip
+
+def GetImgF(out,model,preprocess):
+ imgs=out
+ imgs1=imgs.reshape([-1]+list(imgs.shape[2:]))
+
+ tmp=[]
+ for i in range(len(imgs1)):
+
+ img=Image.fromarray(imgs1[i])
+ image = preprocess(img).unsqueeze(0).to(device)
+ tmp.append(image)
+
+ image=torch.cat(tmp)
+ with torch.no_grad():
+ image_features = model.encode_image(image)
+
+ image_features1=image_features.cpu().numpy()
+ image_features1=image_features1.reshape(list(imgs.shape[:2])+[512])
+
+ return image_features1
+
+def GetFs(fs):
+ tmp=np.linalg.norm(fs,axis=-1)
+ fs1=fs/tmp[:,:,:,None]
+ fs2=fs1[:,:,1,:]-fs1[:,:,0,:] # 5*sigma - (-5)* sigma
+ fs3=fs2/np.linalg.norm(fs2,axis=-1)[:,:,None]
+ fs3=fs3.mean(axis=1)
+ fs3=fs3/np.linalg.norm(fs3,axis=-1)[:,None]
+ return fs3
+
+#%%
+if __name__ == "__main__":
+ '''
+ parser = argparse.ArgumentParser(description='Process some integers.')
+
+ parser.add_argument('--dataset_name',type=str,default='cat',
+ help='name of dataset, for example, ffhq')
+ args = parser.parse_args()
+ dataset_name=args.dataset_name
+ '''
+ #%%
+ device = "cuda" if torch.cuda.is_available() else "cpu"
+ model, preprocess = clip.load("ViT-B/32", device=device,jit=False)
+ #%%
+
+ network_pkl='/cs/labs/danix/wuzongze/Gan_Manipulation/stylegan2/model/stylegan2-human-config-f.pkl'
+ device = torch.device('cuda')
+ M=Manipulator()
+ M.device=device
+ G=M.LoadModel(network_pkl,device)
+ M.G=G
+ M.SetGParameters()
+ num_img=100_000
+ M.GenerateS(num_img=num_img)
+ M.GetCodeMS()
+
+ # M=Manipulator(dataset_name=dataset_name)
+ np.set_printoptions(suppress=True)
+ # print(M.dataset_name)
+ #%%
+ img_sindex=0
+ num_images=100
+ dlatents_o=[]
+ tmp=img_sindex*num_images
+ for i in range(len(M.dlatents)):
+ tmp1=M.dlatents[i][tmp:(tmp+num_images)]
+ dlatents_o.append(tmp1)
+ #%%
+
+ all_f=[]
+ M.alpha=[-5,5] #ffhq 5
+ M.step=2
+ M.num_images=num_images
+ select=np.array(M.mindexs)<=16 #below or equal to 128 resolution
+ mindexs2=np.array(M.mindexs)[select]
+ for lindex in mindexs2: #ignore ToRGB layers
+ print(lindex)
+ num_c=M.dlatents[lindex].shape[1]
+ for cindex in range(num_c):
+
+ M.dlatents=copy.copy(dlatents_o)
+ M.dlatents[lindex][:,cindex]=M.code_mean[lindex][cindex]
+
+ M.manipulate_layers=[lindex]
+ codes,out=M.EditOneC(cindex)
+ image_features1=GetImgF(out,model,preprocess)
+ all_f.append(image_features1)
+
+ all_f=np.array(all_f)
+
+ fs3=GetFs(all_f)
+
+ #%%
+ # file_path='./npy/'+M.dataset_name+'/'
+ file_path='/cs/labs/danix/wuzongze/Gan_Manipulation/stylegan2/results/npy/human/'
+ np.save(file_path+'fs3',fs3)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/global_torch/StyleCLIP.py b/global_torch/StyleCLIP.py
new file mode 100644
index 0000000..5a97bbd
--- /dev/null
+++ b/global_torch/StyleCLIP.py
@@ -0,0 +1,246 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Jun 14 09:40:28 2022
+
+@author: wuzongze
+"""
+
+import os
+
+import sys
+import numpy as np
+import torch
+
+from PIL import Image
+import pickle
+import copy
+import matplotlib.pyplot as plt
+from manipulate import Manipulator
+
+import clip
+
+
+def SplitS(ds_p,M,if_std):
+ all_ds=[]
+ start=0
+ for i in M.mindexs:
+ tmp=M.dlatents[i].shape[1]
+ end=start+tmp
+ tmp=ds_p[start:end]
+# tmp=tmp*M.code_std[i]
+
+ all_ds.append(tmp)
+ start=end
+
+ all_ds2=[]
+ tmp_index=0
+ for i in range(len(M.s_names)):
+ if (not 'RGB' in M.s_names[i]) and (not len(all_ds[tmp_index])==0):
+
+ if if_std:
+ tmp=all_ds[tmp_index]*M.code_std[i]
+ else:
+ tmp=all_ds[tmp_index]
+
+ all_ds2.append(tmp)
+ tmp_index+=1
+ else:
+ tmp=np.zeros(len(M.dlatents[i][0]))
+ all_ds2.append(tmp)
+ return all_ds2
+
+
+imagenet_templates = [
+ 'a bad photo of a {}.',
+# 'a photo of many {}.',
+ 'a sculpture of a {}.',
+ 'a photo of the hard to see {}.',
+ 'a low resolution photo of the {}.',
+ 'a rendering of a {}.',
+ 'graffiti of a {}.',
+ 'a bad photo of the {}.',
+ 'a cropped photo of the {}.',
+ 'a tattoo of a {}.',
+ 'the embroidered {}.',
+ 'a photo of a hard to see {}.',
+ 'a bright photo of a {}.',
+ 'a photo of a clean {}.',
+ 'a photo of a dirty {}.',
+ 'a dark photo of the {}.',
+ 'a drawing of a {}.',
+ 'a photo of my {}.',
+ 'the plastic {}.',
+ 'a photo of the cool {}.',
+ 'a close-up photo of a {}.',
+ 'a black and white photo of the {}.',
+ 'a painting of the {}.',
+ 'a painting of a {}.',
+ 'a pixelated photo of the {}.',
+ 'a sculpture of the {}.',
+ 'a bright photo of the {}.',
+ 'a cropped photo of a {}.',
+ 'a plastic {}.',
+ 'a photo of the dirty {}.',
+ 'a jpeg corrupted photo of a {}.',
+ 'a blurry photo of the {}.',
+ 'a photo of the {}.',
+ 'a good photo of the {}.',
+ 'a rendering of the {}.',
+ 'a {} in a video game.',
+ 'a photo of one {}.',
+ 'a doodle of a {}.',
+ 'a close-up photo of the {}.',
+ 'a photo of a {}.',
+ 'the origami {}.',
+ 'the {} in a video game.',
+ 'a sketch of a {}.',
+ 'a doodle of the {}.',
+ 'a origami {}.',
+ 'a low resolution photo of a {}.',
+ 'the toy {}.',
+ 'a rendition of the {}.',
+ 'a photo of the clean {}.',
+ 'a photo of a large {}.',
+ 'a rendition of a {}.',
+ 'a photo of a nice {}.',
+ 'a photo of a weird {}.',
+ 'a blurry photo of a {}.',
+ 'a cartoon {}.',
+ 'art of a {}.',
+ 'a sketch of the {}.',
+ 'a embroidered {}.',
+ 'a pixelated photo of a {}.',
+ 'itap of the {}.',
+ 'a jpeg corrupted photo of the {}.',
+ 'a good photo of a {}.',
+ 'a plushie {}.',
+ 'a photo of the nice {}.',
+ 'a photo of the small {}.',
+ 'a photo of the weird {}.',
+ 'the cartoon {}.',
+ 'art of the {}.',
+ 'a drawing of the {}.',
+ 'a photo of the large {}.',
+ 'a black and white photo of a {}.',
+ 'the plushie {}.',
+ 'a dark photo of a {}.',
+ 'itap of a {}.',
+ 'graffiti of the {}.',
+ 'a toy {}.',
+ 'itap of my {}.',
+ 'a photo of a cool {}.',
+ 'a photo of a small {}.',
+ 'a tattoo of the {}.',
+]
+
+
+def zeroshot_classifier(classnames, templates,model):
+ with torch.no_grad():
+ zeroshot_weights = []
+ for classname in classnames:
+ texts = [template.format(classname) for template in templates] #format with class
+ texts = clip.tokenize(texts).cuda() #tokenize
+ class_embeddings = model.encode_text(texts) #embed with text encoder
+ class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
+ class_embedding = class_embeddings.mean(dim=0)
+ class_embedding /= class_embedding.norm()
+ zeroshot_weights.append(class_embedding)
+ zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda()
+ return zeroshot_weights
+
+
+def GetDt(classnames,model):
+ text_features=zeroshot_classifier(classnames, imagenet_templates,model).t()
+
+ dt=text_features[0]-text_features[1]
+ dt=dt.cpu().numpy()
+
+
+ print(np.linalg.norm(dt))
+ dt=dt/np.linalg.norm(dt)
+ return dt
+
+
+def GetBoundary(fs3,dt,M,threshold):
+ tmp=np.dot(fs3,dt)
+
+ ds_imp=copy.copy(tmp)
+ select=np.abs(tmp) Any:
+ try:
+ return self[name]
+ except KeyError:
+ raise AttributeError(name)
+
+ def __setattr__(self, name: str, value: Any) -> None:
+ self[name] = value
+
+ def __delattr__(self, name: str) -> None:
+ del self[name]
+
+
+class Logger(object):
+ """Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file."""
+
+ def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True):
+ self.file = None
+
+ if file_name is not None:
+ self.file = open(file_name, file_mode)
+
+ self.should_flush = should_flush
+ self.stdout = sys.stdout
+ self.stderr = sys.stderr
+
+ sys.stdout = self
+ sys.stderr = self
+
+ def __enter__(self) -> "Logger":
+ return self
+
+ def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
+ self.close()
+
+ def write(self, text: Union[str, bytes]) -> None:
+ """Write text to stdout (and a file) and optionally flush."""
+ if isinstance(text, bytes):
+ text = text.decode()
+ if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
+ return
+
+ if self.file is not None:
+ self.file.write(text)
+
+ self.stdout.write(text)
+
+ if self.should_flush:
+ self.flush()
+
+ def flush(self) -> None:
+ """Flush written text to both stdout and a file, if open."""
+ if self.file is not None:
+ self.file.flush()
+
+ self.stdout.flush()
+
+ def close(self) -> None:
+ """Flush, close possible files, and remove stdout/stderr mirroring."""
+ self.flush()
+
+ # if using multiple loggers, prevent closing in wrong order
+ if sys.stdout is self:
+ sys.stdout = self.stdout
+ if sys.stderr is self:
+ sys.stderr = self.stderr
+
+ if self.file is not None:
+ self.file.close()
+ self.file = None
+
+
+# Cache directories
+# ------------------------------------------------------------------------------------------
+
+_dnnlib_cache_dir = None
+
+def set_cache_dir(path: str) -> None:
+ global _dnnlib_cache_dir
+ _dnnlib_cache_dir = path
+
+def make_cache_dir_path(*paths: str) -> str:
+ if _dnnlib_cache_dir is not None:
+ return os.path.join(_dnnlib_cache_dir, *paths)
+ if 'DNNLIB_CACHE_DIR' in os.environ:
+ return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths)
+ if 'HOME' in os.environ:
+ return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths)
+ if 'USERPROFILE' in os.environ:
+ return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths)
+ return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths)
+
+# Small util functions
+# ------------------------------------------------------------------------------------------
+
+
+def format_time(seconds: Union[int, float]) -> str:
+ """Convert the seconds to human readable string with days, hours, minutes and seconds."""
+ s = int(np.rint(seconds))
+
+ if s < 60:
+ return "{0}s".format(s)
+ elif s < 60 * 60:
+ return "{0}m {1:02}s".format(s // 60, s % 60)
+ elif s < 24 * 60 * 60:
+ return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60)
+ else:
+ return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60)
+
+
+def ask_yes_no(question: str) -> bool:
+ """Ask the user the question until the user inputs a valid answer."""
+ while True:
+ try:
+ print("{0} [y/n]".format(question))
+ return strtobool(input().lower())
+ except ValueError:
+ pass
+
+
+def tuple_product(t: Tuple) -> Any:
+ """Calculate the product of the tuple elements."""
+ result = 1
+
+ for v in t:
+ result *= v
+
+ return result
+
+
+_str_to_ctype = {
+ "uint8": ctypes.c_ubyte,
+ "uint16": ctypes.c_uint16,
+ "uint32": ctypes.c_uint32,
+ "uint64": ctypes.c_uint64,
+ "int8": ctypes.c_byte,
+ "int16": ctypes.c_int16,
+ "int32": ctypes.c_int32,
+ "int64": ctypes.c_int64,
+ "float32": ctypes.c_float,
+ "float64": ctypes.c_double
+}
+
+
+def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]:
+ """Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes."""
+ type_str = None
+
+ if isinstance(type_obj, str):
+ type_str = type_obj
+ elif hasattr(type_obj, "__name__"):
+ type_str = type_obj.__name__
+ elif hasattr(type_obj, "name"):
+ type_str = type_obj.name
+ else:
+ raise RuntimeError("Cannot infer type name from input")
+
+ assert type_str in _str_to_ctype.keys()
+
+ my_dtype = np.dtype(type_str)
+ my_ctype = _str_to_ctype[type_str]
+
+ assert my_dtype.itemsize == ctypes.sizeof(my_ctype)
+
+ return my_dtype, my_ctype
+
+
+def is_pickleable(obj: Any) -> bool:
+ try:
+ with io.BytesIO() as stream:
+ pickle.dump(obj, stream)
+ return True
+ except:
+ return False
+
+
+# Functionality to import modules/objects by name, and call functions by name
+# ------------------------------------------------------------------------------------------
+
+def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]:
+ """Searches for the underlying module behind the name to some python object.
+ Returns the module and the object name (original name with module part removed)."""
+
+ # allow convenience shorthands, substitute them by full names
+ obj_name = re.sub("^np.", "numpy.", obj_name)
+ obj_name = re.sub("^tf.", "tensorflow.", obj_name)
+
+ # list alternatives for (module_name, local_obj_name)
+ parts = obj_name.split(".")
+ name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)]
+
+ # try each alternative in turn
+ for module_name, local_obj_name in name_pairs:
+ try:
+ module = importlib.import_module(module_name) # may raise ImportError
+ get_obj_from_module(module, local_obj_name) # may raise AttributeError
+ return module, local_obj_name
+ except:
+ pass
+
+ # maybe some of the modules themselves contain errors?
+ for module_name, _local_obj_name in name_pairs:
+ try:
+ importlib.import_module(module_name) # may raise ImportError
+ except ImportError:
+ if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"):
+ raise
+
+ # maybe the requested attribute is missing?
+ for module_name, local_obj_name in name_pairs:
+ try:
+ module = importlib.import_module(module_name) # may raise ImportError
+ get_obj_from_module(module, local_obj_name) # may raise AttributeError
+ except ImportError:
+ pass
+
+ # we are out of luck, but we have no idea why
+ raise ImportError(obj_name)
+
+
+def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any:
+ """Traverses the object name and returns the last (rightmost) python object."""
+ if obj_name == '':
+ return module
+ obj = module
+ for part in obj_name.split("."):
+ obj = getattr(obj, part)
+ return obj
+
+
+def get_obj_by_name(name: str) -> Any:
+ """Finds the python object with the given name."""
+ module, obj_name = get_module_from_obj_name(name)
+ return get_obj_from_module(module, obj_name)
+
+
+def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any:
+ """Finds the python object with the given name and calls it as a function."""
+ assert func_name is not None
+ func_obj = get_obj_by_name(func_name)
+ assert callable(func_obj)
+ return func_obj(*args, **kwargs)
+
+
+def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any:
+ """Finds the python class with the given name and constructs it with the given arguments."""
+ return call_func_by_name(*args, func_name=class_name, **kwargs)
+
+
+def get_module_dir_by_obj_name(obj_name: str) -> str:
+ """Get the directory path of the module containing the given object name."""
+ module, _ = get_module_from_obj_name(obj_name)
+ return os.path.dirname(inspect.getfile(module))
+
+
+def is_top_level_function(obj: Any) -> bool:
+ """Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'."""
+ return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__
+
+
+def get_top_level_function_name(obj: Any) -> str:
+ """Return the fully-qualified name of a top-level function."""
+ assert is_top_level_function(obj)
+ module = obj.__module__
+ if module == '__main__':
+ module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0]
+ return module + "." + obj.__name__
+
+
+# File system helpers
+# ------------------------------------------------------------------------------------------
+
+def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]:
+ """List all files recursively in a given directory while ignoring given file and directory names.
+ Returns list of tuples containing both absolute and relative paths."""
+ assert os.path.isdir(dir_path)
+ base_name = os.path.basename(os.path.normpath(dir_path))
+
+ if ignores is None:
+ ignores = []
+
+ result = []
+
+ for root, dirs, files in os.walk(dir_path, topdown=True):
+ for ignore_ in ignores:
+ dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)]
+
+ # dirs need to be edited in-place
+ for d in dirs_to_remove:
+ dirs.remove(d)
+
+ files = [f for f in files if not fnmatch.fnmatch(f, ignore_)]
+
+ absolute_paths = [os.path.join(root, f) for f in files]
+ relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths]
+
+ if add_base_to_relative:
+ relative_paths = [os.path.join(base_name, p) for p in relative_paths]
+
+ assert len(absolute_paths) == len(relative_paths)
+ result += zip(absolute_paths, relative_paths)
+
+ return result
+
+
+def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None:
+ """Takes in a list of tuples of (src, dst) paths and copies files.
+ Will create all necessary directories."""
+ for file in files:
+ target_dir_name = os.path.dirname(file[1])
+
+ # will create all intermediate-level directories
+ if not os.path.exists(target_dir_name):
+ os.makedirs(target_dir_name)
+
+ shutil.copyfile(file[0], file[1])
+
+
+# URL helpers
+# ------------------------------------------------------------------------------------------
+
+def is_url(obj: Any, allow_file_urls: bool = False) -> bool:
+ """Determine whether the given object is a valid URL string."""
+ if not isinstance(obj, str) or not "://" in obj:
+ return False
+ if allow_file_urls and obj.startswith('file://'):
+ return True
+ try:
+ res = requests.compat.urlparse(obj)
+ if not res.scheme or not res.netloc or not "." in res.netloc:
+ return False
+ res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
+ if not res.scheme or not res.netloc or not "." in res.netloc:
+ return False
+ except:
+ return False
+ return True
+
+
+def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any:
+ """Download the given URL and return a binary-mode file object to access the data."""
+ assert num_attempts >= 1
+ assert not (return_filename and (not cache))
+
+ # Doesn't look like an URL scheme so interpret it as a local filename.
+ if not re.match('^[a-z]+://', url):
+ return url if return_filename else open(url, "rb")
+
+ # Handle file URLs. This code handles unusual file:// patterns that
+ # arise on Windows:
+ #
+ # file:///c:/foo.txt
+ #
+ # which would translate to a local '/c:/foo.txt' filename that's
+ # invalid. Drop the forward slash for such pathnames.
+ #
+ # If you touch this code path, you should test it on both Linux and
+ # Windows.
+ #
+ # Some internet resources suggest using urllib.request.url2pathname() but
+ # but that converts forward slashes to backslashes and this causes
+ # its own set of problems.
+ if url.startswith('file://'):
+ filename = urllib.parse.urlparse(url).path
+ if re.match(r'^/[a-zA-Z]:', filename):
+ filename = filename[1:]
+ return filename if return_filename else open(filename, "rb")
+
+ assert is_url(url)
+
+ # Lookup from cache.
+ if cache_dir is None:
+ cache_dir = make_cache_dir_path('downloads')
+
+ url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
+ if cache:
+ cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
+ if len(cache_files) == 1:
+ filename = cache_files[0]
+ return filename if return_filename else open(filename, "rb")
+
+ # Download.
+ url_name = None
+ url_data = None
+ with requests.Session() as session:
+ if verbose:
+ print("Downloading %s ..." % url, end="", flush=True)
+ for attempts_left in reversed(range(num_attempts)):
+ try:
+ with session.get(url) as res:
+ res.raise_for_status()
+ if len(res.content) == 0:
+ raise IOError("No data received")
+
+ if len(res.content) < 8192:
+ content_str = res.content.decode("utf-8")
+ if "download_warning" in res.headers.get("Set-Cookie", ""):
+ links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
+ if len(links) == 1:
+ url = requests.compat.urljoin(url, links[0])
+ raise IOError("Google Drive virus checker nag")
+ if "Google Drive - Quota exceeded" in content_str:
+ raise IOError("Google Drive download quota exceeded -- please try again later")
+
+ match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
+ url_name = match[1] if match else url
+ url_data = res.content
+ if verbose:
+ print(" done")
+ break
+ except KeyboardInterrupt:
+ raise
+ except:
+ if not attempts_left:
+ if verbose:
+ print(" failed")
+ raise
+ if verbose:
+ print(".", end="", flush=True)
+
+ # Save to cache.
+ if cache:
+ safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
+ cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
+ temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
+ os.makedirs(cache_dir, exist_ok=True)
+ with open(temp_file, "wb") as f:
+ f.write(url_data)
+ os.replace(temp_file, cache_file) # atomic
+ if return_filename:
+ return cache_file
+
+ # Return data as file object.
+ assert not return_filename
+ return io.BytesIO(url_data)
diff --git a/global_torch/html/[6]_501_c.html b/global_torch/html/[6]_501_c.html
new file mode 100644
index 0000000..4d0740c
--- /dev/null
+++ b/global_torch/html/[6]_501_c.html
@@ -0,0 +1,99 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Name |
+ Step 01 |
+
+
+
+
+ 0
|
+  |
+
+
+ 1
|
+  |
+
+
+ 2
|
+  |
+
+
+ 3
|
+  |
+
+
+ 4
|
+  |
+
+
+ 5
|
+  |
+
+
+ 6
|
+  |
+
+
+ 7
|
+  |
+
+
+ 8
|
+  |
+
+
+ 9
|
+  |
+
+
+
+
+
+
diff --git a/global_torch/html/real_.html b/global_torch/html/real_.html
new file mode 100644
index 0000000..d32725e
--- /dev/null
+++ b/global_torch/html/real_.html
@@ -0,0 +1,223 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Name |
+ original |
+ man |
+ person with T-shirt |
+ person with jeans |
+ person with jacket |
+
+
+
+
+ |
+  |
+  |
+  |
+  |
+  |
+
+
+ 1
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 2
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 3
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 4
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 5
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 6
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 7
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 8
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 9
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 10
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 11
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 12
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 13
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 14
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 15
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 16
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 17
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 18
|
+  |
+  |
+  |
+  |
+  |
+
+
+ 19
|
+  |
+  |
+  |
+  |
+  |
+
+
+
+
+
+
diff --git a/global_torch/legacy.py b/global_torch/legacy.py
new file mode 100644
index 0000000..f7daee7
--- /dev/null
+++ b/global_torch/legacy.py
@@ -0,0 +1,326 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+import click
+import pickle
+import re
+import copy
+import numpy as np
+import torch
+import dnnlib
+from torch_utils import misc
+
+#----------------------------------------------------------------------------
+
+def load_network_pkl(f, force_fp16=False):
+ data = _LegacyUnpickler(f).load()
+
+ # Legacy TensorFlow pickle => convert.
+ if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data):
+ tf_G, tf_D, tf_Gs = data
+ G = convert_tf_generator(tf_G)
+ D = convert_tf_discriminator(tf_D)
+ G_ema = convert_tf_generator(tf_Gs)
+ data = dict(G=G, D=D, G_ema=G_ema)
+
+ # Add missing fields.
+ if 'training_set_kwargs' not in data:
+ data['training_set_kwargs'] = None
+ if 'augment_pipe' not in data:
+ data['augment_pipe'] = None
+
+ # Validate contents.
+ assert isinstance(data['G'], torch.nn.Module)
+ assert isinstance(data['D'], torch.nn.Module)
+ assert isinstance(data['G_ema'], torch.nn.Module)
+ assert isinstance(data['training_set_kwargs'], (dict, type(None)))
+ assert isinstance(data['augment_pipe'], (torch.nn.Module, type(None)))
+
+ # Force FP16.
+ if force_fp16:
+ for key in ['G', 'D', 'G_ema']:
+ old = data[key]
+ kwargs = copy.deepcopy(old.init_kwargs)
+ if key.startswith('G'):
+ kwargs.synthesis_kwargs = dnnlib.EasyDict(kwargs.get('synthesis_kwargs', {}))
+ kwargs.synthesis_kwargs.num_fp16_res = 4
+ kwargs.synthesis_kwargs.conv_clamp = 256
+ if key.startswith('D'):
+ kwargs.num_fp16_res = 4
+ kwargs.conv_clamp = 256
+ if kwargs != old.init_kwargs:
+ new = type(old)(**kwargs).eval().requires_grad_(False)
+ misc.copy_params_and_buffers(old, new, require_all=True)
+ data[key] = new
+ return data
+
+#----------------------------------------------------------------------------
+
+class _TFNetworkStub(dnnlib.EasyDict):
+ pass
+
+class _LegacyUnpickler(pickle.Unpickler):
+ def find_class(self, module, name):
+ if module == 'dnnlib.tflib.network' and name == 'Network':
+ return _TFNetworkStub
+ return super().find_class(module, name)
+
+#----------------------------------------------------------------------------
+
+def _collect_tf_params(tf_net):
+ # pylint: disable=protected-access
+ tf_params = dict()
+ def recurse(prefix, tf_net):
+ for name, value in tf_net.variables:
+ tf_params[prefix + name] = value
+ for name, comp in tf_net.components.items():
+ recurse(prefix + name + '/', comp)
+ recurse('', tf_net)
+ return tf_params
+
+#----------------------------------------------------------------------------
+
+def _populate_module_params(module, *patterns):
+ for name, tensor in misc.named_params_and_buffers(module):
+ found = False
+ value = None
+ for pattern, value_fn in zip(patterns[0::2], patterns[1::2]):
+ match = re.fullmatch(pattern, name)
+ if match:
+ found = True
+ if value_fn is not None:
+ value = value_fn(*match.groups())
+ break
+ try:
+ assert found
+ if value is not None:
+ tensor.copy_(torch.from_numpy(np.array(value)))
+ except:
+ print(name, list(tensor.shape))
+ raise
+
+#----------------------------------------------------------------------------
+
+def convert_tf_generator(tf_G):
+ if tf_G.version < 4:
+ raise ValueError('TensorFlow pickle version too low')
+
+ # Collect kwargs.
+ tf_kwargs = tf_G.static_kwargs
+ known_kwargs = set()
+ def kwarg(tf_name, default=None, none=None):
+ known_kwargs.add(tf_name)
+ val = tf_kwargs.get(tf_name, default)
+ return val if val is not None else none
+
+ # Convert kwargs.
+ kwargs = dnnlib.EasyDict(
+ z_dim = kwarg('latent_size', 512),
+ c_dim = kwarg('label_size', 0),
+ w_dim = kwarg('dlatent_size', 512),
+ img_resolution = kwarg('resolution', 1024),
+ img_channels = kwarg('num_channels', 3),
+ mapping_kwargs = dnnlib.EasyDict(
+ num_layers = kwarg('mapping_layers', 8),
+ embed_features = kwarg('label_fmaps', None),
+ layer_features = kwarg('mapping_fmaps', None),
+ activation = kwarg('mapping_nonlinearity', 'lrelu'),
+ lr_multiplier = kwarg('mapping_lrmul', 0.01),
+ w_avg_beta = kwarg('w_avg_beta', 0.995, none=1),
+ ),
+ synthesis_kwargs = dnnlib.EasyDict(
+ channel_base = kwarg('fmap_base', 16384) * 2,
+ channel_max = kwarg('fmap_max', 512),
+ num_fp16_res = kwarg('num_fp16_res', 0),
+ conv_clamp = kwarg('conv_clamp', None),
+ architecture = kwarg('architecture', 'skip'),
+ resample_filter = kwarg('resample_kernel', [1,3,3,1]),
+ use_noise = kwarg('use_noise', True),
+ activation = kwarg('nonlinearity', 'lrelu'),
+ ),
+ )
+
+ # Check for unknown kwargs.
+ kwarg('truncation_psi')
+ kwarg('truncation_cutoff')
+ kwarg('style_mixing_prob')
+ kwarg('structure')
+ if 'resolution_w' in tf_kwargs:
+ tf_kwargs.pop('resolution_w', None)
+ tf_kwargs.pop('resolution_h', None)
+ unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
+ if len(unknown_kwargs) > 0:
+ raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0])
+
+ # Collect params.
+ tf_params = _collect_tf_params(tf_G)
+ for name, value in list(tf_params.items()):
+ match = re.fullmatch(r'ToRGB_lod(\d+)/(.*)', name)
+ if match:
+ r = kwargs.img_resolution // (2 ** int(match.group(1)))
+ tf_params[f'{r}x{r}/ToRGB/{match.group(2)}'] = value
+ kwargs.synthesis.kwargs.architecture = 'orig'
+ #for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}')
+
+ # Convert params.
+ from training import networks
+ G = networks.Generator(**kwargs).eval().requires_grad_(False)
+ # pylint: disable=unnecessary-lambda
+ _populate_module_params(G,
+ r'mapping\.w_avg', lambda: tf_params[f'dlatent_avg'],
+ r'mapping\.embed\.weight', lambda: tf_params[f'mapping/LabelEmbed/weight'].transpose(),
+ r'mapping\.embed\.bias', lambda: tf_params[f'mapping/LabelEmbed/bias'],
+ r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'mapping/Dense{i}/weight'].transpose(),
+ r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'mapping/Dense{i}/bias'],
+ r'synthesis\.b4\.const', lambda: tf_params[f'synthesis/4x4/Const/const'][0],
+ r'synthesis\.b4\.conv1\.weight', lambda: tf_params[f'synthesis/4x4/Conv/weight'].transpose(3, 2, 0, 1),
+ r'synthesis\.b4\.conv1\.bias', lambda: tf_params[f'synthesis/4x4/Conv/bias'],
+ r'synthesis\.b4\.conv1\.noise_const', lambda: tf_params[f'synthesis/noise0'][0, 0],
+ r'synthesis\.b4\.conv1\.noise_strength', lambda: tf_params[f'synthesis/4x4/Conv/noise_strength'],
+ r'synthesis\.b4\.conv1\.affine\.weight', lambda: tf_params[f'synthesis/4x4/Conv/mod_weight'].transpose(),
+ r'synthesis\.b4\.conv1\.affine\.bias', lambda: tf_params[f'synthesis/4x4/Conv/mod_bias'] + 1,
+ r'synthesis\.b(\d+)\.conv0\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/weight'][::-1, ::-1].transpose(3, 2, 0, 1),
+ r'synthesis\.b(\d+)\.conv0\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/bias'],
+ r'synthesis\.b(\d+)\.conv0\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-5}'][0, 0],
+ r'synthesis\.b(\d+)\.conv0\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/noise_strength'],
+ r'synthesis\.b(\d+)\.conv0\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_weight'].transpose(),
+ r'synthesis\.b(\d+)\.conv0\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_bias'] + 1,
+ r'synthesis\.b(\d+)\.conv1\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/weight'].transpose(3, 2, 0, 1),
+ r'synthesis\.b(\d+)\.conv1\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/bias'],
+ r'synthesis\.b(\d+)\.conv1\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-4}'][0, 0],
+ r'synthesis\.b(\d+)\.conv1\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/noise_strength'],
+ r'synthesis\.b(\d+)\.conv1\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_weight'].transpose(),
+ r'synthesis\.b(\d+)\.conv1\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_bias'] + 1,
+ r'synthesis\.b(\d+)\.torgb\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/weight'].transpose(3, 2, 0, 1),
+ r'synthesis\.b(\d+)\.torgb\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/bias'],
+ r'synthesis\.b(\d+)\.torgb\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_weight'].transpose(),
+ r'synthesis\.b(\d+)\.torgb\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_bias'] + 1,
+ r'synthesis\.b(\d+)\.skip\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Skip/weight'][::-1, ::-1].transpose(3, 2, 0, 1),
+ r'.*\.resample_filter', None,
+ )
+ return G
+
+#----------------------------------------------------------------------------
+
+def convert_tf_discriminator(tf_D):
+ if tf_D.version < 4:
+ raise ValueError('TensorFlow pickle version too low')
+
+ # Collect kwargs.
+ tf_kwargs = tf_D.static_kwargs
+ known_kwargs = set()
+ def kwarg(tf_name, default=None):
+ known_kwargs.add(tf_name)
+ return tf_kwargs.get(tf_name, default)
+
+ # Convert kwargs.
+ kwargs = dnnlib.EasyDict(
+ c_dim = kwarg('label_size', 0),
+ img_resolution = kwarg('resolution', 1024),
+ img_channels = kwarg('num_channels', 3),
+ architecture = kwarg('architecture', 'resnet'),
+ channel_base = kwarg('fmap_base', 16384) * 2,
+ channel_max = kwarg('fmap_max', 512),
+ num_fp16_res = kwarg('num_fp16_res', 0),
+ conv_clamp = kwarg('conv_clamp', None),
+ cmap_dim = kwarg('mapping_fmaps', None),
+ block_kwargs = dnnlib.EasyDict(
+ activation = kwarg('nonlinearity', 'lrelu'),
+ resample_filter = kwarg('resample_kernel', [1,3,3,1]),
+ freeze_layers = kwarg('freeze_layers', 0),
+ ),
+ mapping_kwargs = dnnlib.EasyDict(
+ num_layers = kwarg('mapping_layers', 0),
+ embed_features = kwarg('mapping_fmaps', None),
+ layer_features = kwarg('mapping_fmaps', None),
+ activation = kwarg('nonlinearity', 'lrelu'),
+ lr_multiplier = kwarg('mapping_lrmul', 0.1),
+ ),
+ epilogue_kwargs = dnnlib.EasyDict(
+ mbstd_group_size = kwarg('mbstd_group_size', None),
+ mbstd_num_channels = kwarg('mbstd_num_features', 1),
+ activation = kwarg('nonlinearity', 'lrelu'),
+ ),
+ )
+
+ # Check for unknown kwargs.
+ kwarg('structure')
+ if 'resolution_w' in tf_kwargs:
+ tf_kwargs.pop('resolution_w', None)
+ tf_kwargs.pop('resolution_h', None)
+ unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
+ if len(unknown_kwargs) > 0:
+ raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0])
+
+ # Collect params.
+ tf_params = _collect_tf_params(tf_D)
+ for name, value in list(tf_params.items()):
+ match = re.fullmatch(r'FromRGB_lod(\d+)/(.*)', name)
+ if match:
+ r = kwargs.img_resolution // (2 ** int(match.group(1)))
+ tf_params[f'{r}x{r}/FromRGB/{match.group(2)}'] = value
+ kwargs.architecture = 'orig'
+ #for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}')
+
+ # Convert params.
+ from training import networks
+ D = networks.Discriminator(**kwargs).eval().requires_grad_(False)
+ # pylint: disable=unnecessary-lambda
+ _populate_module_params(D,
+ r'b(\d+)\.fromrgb\.weight', lambda r: tf_params[f'{r}x{r}/FromRGB/weight'].transpose(3, 2, 0, 1),
+ r'b(\d+)\.fromrgb\.bias', lambda r: tf_params[f'{r}x{r}/FromRGB/bias'],
+ r'b(\d+)\.conv(\d+)\.weight', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/weight'].transpose(3, 2, 0, 1),
+ r'b(\d+)\.conv(\d+)\.bias', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/bias'],
+ r'b(\d+)\.skip\.weight', lambda r: tf_params[f'{r}x{r}/Skip/weight'].transpose(3, 2, 0, 1),
+ r'mapping\.embed\.weight', lambda: tf_params[f'LabelEmbed/weight'].transpose(),
+ r'mapping\.embed\.bias', lambda: tf_params[f'LabelEmbed/bias'],
+ r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'Mapping{i}/weight'].transpose(),
+ r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'Mapping{i}/bias'],
+ r'b4\.conv\.weight', lambda: tf_params[f'4x4/Conv/weight'].transpose(3, 2, 0, 1),
+ r'b4\.conv\.bias', lambda: tf_params[f'4x4/Conv/bias'],
+ r'b4\.fc\.weight', lambda: tf_params[f'4x4/Dense0/weight'].transpose(),
+ r'b4\.fc\.bias', lambda: tf_params[f'4x4/Dense0/bias'],
+ r'b4\.out\.weight', lambda: tf_params[f'Output/weight'].transpose(),
+ r'b4\.out\.bias', lambda: tf_params[f'Output/bias'],
+ r'.*\.resample_filter', None,
+ )
+ return D
+
+#----------------------------------------------------------------------------
+
+@click.command()
+@click.option('--source', help='Input pickle', required=True, metavar='PATH')
+@click.option('--dest', help='Output pickle', required=True, metavar='PATH')
+@click.option('--force-fp16', help='Force the networks to use FP16', type=bool, default=False, metavar='BOOL', show_default=True)
+def convert_network_pickle(source, dest, force_fp16):
+ """Convert legacy network pickle into the native PyTorch format.
+
+ The tool is able to load the main network configurations exported using the TensorFlow version of StyleGAN2 or StyleGAN2-ADA.
+ It does not support e.g. StyleGAN2-ADA comparison methods, StyleGAN2 configs A-D, or StyleGAN1 networks.
+
+ Example:
+
+ \b
+ python legacy.py \\
+ --source=https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/stylegan2-cat-config-f.pkl \\
+ --dest=stylegan2-cat-config-f.pkl
+ """
+ print(f'Loading "{source}"...')
+ with dnnlib.util.open_url(source) as f:
+ data = load_network_pkl(f, force_fp16=force_fp16)
+ print(f'Saving "{dest}"...')
+ with open(dest, 'wb') as f:
+ pickle.dump(data, f)
+ print('Done.')
+
+#----------------------------------------------------------------------------
+
+if __name__ == "__main__":
+ convert_network_pickle() # pylint: disable=no-value-for-parameter
+
+#----------------------------------------------------------------------------
diff --git a/global_torch/manipulate.py b/global_torch/manipulate.py
new file mode 100644
index 0000000..cc40ffc
--- /dev/null
+++ b/global_torch/manipulate.py
@@ -0,0 +1,383 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Mon Jul 19 21:03:58 2021
+
+@author: wuzongze
+"""
+
+
+import sys
+
+import copy
+import os
+from time import perf_counter
+
+import click
+import imageio
+import numpy as np
+import PIL.Image
+import torch
+import torch.nn.functional as F
+from PIL import Image
+
+import dnnlib
+import legacy
+import pickle
+from visualizer import HtmlPageVisualizer
+
+from torch_utils import misc
+import types
+from training.networks import SynthesisNetwork,SynthesisBlock,SynthesisLayer,ToRGBLayer
+
+
+def change_style_code(codes, layer, channel, step):
+ codes[layer][:, channel] += step
+ return codes
+
+def Vis(bname,suffix,out,rownames=None,colnames=None,save_path=None,viz_size=256):
+
+ if save_path is None:
+ save_path='./html/'
+
+
+ num_images=out.shape[0]
+ step=out.shape[1]
+
+ if colnames is None:
+ colnames=[f'Step {i:02d}' for i in range(1, step + 1)]
+ if rownames is None:
+ rownames=[str(i) for i in range(num_images)]
+
+
+ visualizer = HtmlPageVisualizer(
+ num_rows=num_images, num_cols=step + 1, viz_size=viz_size)
+ visualizer.set_headers(
+ ['Name'] +colnames)
+
+ for i in range(num_images):
+ visualizer.set_cell(i, 0, text=rownames[i])
+
+ for i in range(num_images):
+ for k in range(step):
+ image=out[i,k,:,:,:]
+ visualizer.set_cell(i, 1+k, image=image)
+
+ visualizer.save(save_path+bname+'_'+suffix+'.html')
+
+def LoadModel(network_pkl,device):
+ with dnnlib.util.open_url(network_pkl) as fp:
+ G = legacy.load_network_pkl(fp)['G_ema'].requires_grad_(False).to(device) # type: ignore
+
+ G.synthesis.forward=types.MethodType(SynthesisNetwork.forward,G.synthesis)
+ G.synthesis.W2S=types.MethodType(SynthesisNetwork.W2S,G.synthesis)
+
+ for res in G.synthesis.block_resolutions:
+ block = getattr(G.synthesis, f'b{res}')
+ # print(block)
+ block.forward=types.MethodType(SynthesisBlock.forward,block)
+
+ if res!=4:
+ layer=block.conv0
+ layer.forward=types.MethodType(SynthesisLayer.forward,layer)
+ layer.name='conv0_resolution_'+str(res)
+
+ layer=block.conv1
+ layer.forward=types.MethodType(SynthesisLayer.forward,layer)
+ layer.name='conv1_resolution_'+str(res)
+
+ layer=block.torgb
+ layer.forward=types.MethodType(ToRGBLayer.forward,layer)
+ layer.name='toRGB_resolution_'+str(res)
+
+
+ return G
+
+
+def S2List(encoded_styles):
+ all_s=[]
+ for name in encoded_styles.keys():
+ tmp=encoded_styles[name].cpu().numpy()
+ all_s.append(tmp)
+ return all_s
+
+
+
+class Manipulator():
+ def __init__(self,dataset_name='ffhq'):
+
+ self.alpha=[0] #manipulation strength
+ self.num_images=10
+ self.img_index=0 #which image to start
+ # self.viz_size=256
+ self.manipulate_layers=None #which layer to manipulate, list
+ self.truncation_psi=0.7
+ self.truncation_cutoff=8
+
+# self.G=LoadModel(self.model_path,self.model_name)
+
+ self.LoadModel=LoadModel
+ self.Vis=Vis
+ self.S2List=S2List
+
+ fmaps=[512, 512, 512, 512, 512, 256, 128, 64, 32]
+ self.fmaps=np.repeat(fmaps,3)
+
+
+ def GetSName(self):
+ s_names=[]
+ for res in self.G.synthesis.block_resolutions:
+ if res==4:
+ tmp=f'conv1_resolution_{res}'
+ s_names.append(tmp)
+
+ tmp=f'toRGB_resolution_{res}'
+ s_names.append(tmp)
+ else:
+ tmp=f'conv0_resolution_{res}'
+ s_names.append(tmp)
+
+ tmp=f'conv1_resolution_{res}'
+ s_names.append(tmp)
+
+ tmp=f'toRGB_resolution_{res}'
+ s_names.append(tmp)
+
+ return s_names
+
+ def SL2D(self,tmp_code):
+ encoded_styles={}
+ for i in range(len(self.s_names)):
+ encoded_styles[self.s_names[i]]=torch.from_numpy(tmp_code[i]).to(self.device)
+
+ return encoded_styles
+
+
+
+ def GenerateS(self,num_img=100):
+ seed=5
+ with torch.no_grad():
+ z = torch.from_numpy(np.random.RandomState(seed).randn(num_img, self.G.z_dim)).to(self.device)
+ ws = self.G.mapping(z=z,c=None,truncation_psi=self.truncation_psi,truncation_cutoff=self.truncation_cutoff)
+ encoded_styles=self.G.synthesis.W2S(ws)
+# encoded_styles=encoded_styles.cpu().numpy()
+
+ self.dlatents=S2List(encoded_styles)
+
+ def GenerateImg(self,codes):
+
+ num_images,step=codes[0].shape[:2]
+ out=np.zeros((num_images,step,self.img_size,self.img_size,3),dtype='uint8')
+ for i in range(num_images):
+ for k in range(step):
+
+ tmp_code=[]
+ for m in range(len(self.s_names)):
+ tmp=codes[m][i,k][None,:]
+ tmp_code.append(tmp)
+
+ encoded_styles=self.SL2D(tmp_code)
+
+ with torch.no_grad():
+ img = self.G.synthesis(None, encoded_styles=encoded_styles,noise_mode='const')
+ img = (img + 1) * (255/2)
+ img = img.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
+
+
+
+ if img.shape[1]==img.shape[0]:
+ out[i,k,:,:,:]=img
+ else:
+ tmp=img.shape[1]
+ tmp1=int((img.shape[0]-tmp)/2)
+ out[i,k,:,tmp1:tmp1+tmp,:]=img
+ return out
+
+ def ShowImg(self,num_img=10):
+
+ codes=[]
+ for i in range(len(self.dlatents)):
+ # print(i)
+ tmp=self.dlatents[i][:num_img,None,:]
+ codes.append(tmp)
+ out=self.GenerateImg(codes)
+ return out
+
+ def SetGParameters(self):
+ self.num_layers=self.G.synthesis.num_ws
+ self.img_size=self.G.synthesis.img_resolution
+ self.s_names=self.GetSName()
+
+ self.img_size=self.G.synthesis.block_resolutions[-1]
+
+ self.mindexs=[0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21,23,24]
+
+
+
+ def MSCode(self,dlatent_tmp,boundary_tmp):
+
+ step=len(self.alpha)
+ dlatent_tmp1=[tmp.reshape((self.num_images,-1)) for tmp in dlatent_tmp]
+ dlatent_tmp2=[np.tile(tmp[:,None],(1,step,1)) for tmp in dlatent_tmp1] # (10, 7, 512)
+
+ l=np.array(self.alpha)
+ l=l.reshape(
+ [step if axis == 1 else 1 for axis in range(dlatent_tmp2[0].ndim)])
+
+ if type(self.manipulate_layers)==int:
+ tmp=[self.manipulate_layers]
+ elif type(self.manipulate_layers)==list:
+ tmp=self.manipulate_layers
+ elif self.manipulate_layers is None:
+ tmp=np.arange(len(boundary_tmp))
+ else:
+ raise ValueError('manipulate_layers is wrong')
+
+ for i in tmp:
+ dlatent_tmp2[i]+=l*boundary_tmp[i]
+
+ codes=[]
+ for i in range(len(dlatent_tmp2)):
+ tmp=list(dlatent_tmp[i].shape)
+ tmp.insert(1,step)
+ codes.append(dlatent_tmp2[i].reshape(tmp))
+ return codes
+
+
+ def EditOne(self,bname,dlatent_tmp=None):
+ if dlatent_tmp==None:
+ dlatent_tmp=[tmp[self.img_index:(self.img_index+self.num_images)] for tmp in self.dlatents]
+
+ boundary_tmp=[]
+ for i in range(len(self.boundary)):
+ tmp=self.boundary[i]
+ if len(tmp)<=bname:
+ boundary_tmp.append([])
+ else:
+ boundary_tmp.append(tmp[bname])
+
+ codes=self.MSCode(dlatent_tmp,boundary_tmp)
+
+ out=self.GenerateImg(codes)
+ return codes,out
+
+ def EditOneC(self,cindex,dlatent_tmp=None):
+ if dlatent_tmp==None:
+ dlatent_tmp=[tmp[self.img_index:(self.img_index+self.num_images)] for tmp in self.dlatents]
+
+ boundary_tmp=[[] for i in range(len(self.dlatents))]
+
+ #'only manipulate 1 layer and one channel'
+ assert len(self.manipulate_layers)==1
+
+ ml=self.manipulate_layers[0]
+ tmp=dlatent_tmp[ml].shape[1] #ada
+ tmp1=np.zeros(tmp)
+ tmp1[cindex]=self.code_std[ml][cindex] #1
+ boundary_tmp[ml]=tmp1
+
+ codes=self.MSCode(dlatent_tmp,boundary_tmp)
+ out=self.GenerateImg(codes)
+ return codes,out
+
+ def GetFindex(self,lindex,cindex,ignore_RGB=False):
+
+ if ignore_RGB:
+ tmp=np.array(self.mindexs)0]
+ lindex=len(tmp)
+ if lindex==0:
+ cindex=tmp_index
+ else:
+ cindex=tmp[-1]
+
+ if cindex ==self.fmaps[lindex]:
+ cindex=0
+ lindex+=1
+ # print(completeness.index[i],completeness.iloc[i,:].values,lindex,cindex)
+ l_p.append([lindex,cindex])
+ l_p=np.array(l_p)
+ return l_p
+ def GetLCIndex2(self,findex): #input findex without ToRGB
+ fmaps_o=copy.copy(self.fmaps)
+ mindexs=[0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21,23,24]
+ self.fmaps=fmaps_o[mindexs]
+
+ l_p=self.GetLCIndex(findex)
+
+ l=l_p[:,0]
+ l2=np.array(mindexs)[l]
+ l_p[:,0]=l2
+ self.fmaps=fmaps_o
+ return l_p
+
+ def GetCodeMS(self):
+ m=[]
+ std=[]
+ for i in range(len(self.dlatents)):
+ tmp= self.dlatents[i]
+ tmp_mean=tmp.mean(axis=0)
+ tmp_std=tmp.std(axis=0)
+ m.append(tmp_mean)
+ std.append(tmp_std)
+
+ self.code_mean=m
+ self.code_std=std
+ # return m,std
+
+
+#%%
+if __name__ == "__main__":
+ network_pkl='/cs/labs/danix/wuzongze/Gan_Manipulation/stylegan2/model/stylegan2-ffhq-config-f.pkl'
+ device = torch.device('cuda')
+ M=Manipulator()
+ M.device=device
+ G=M.LoadModel(network_pkl,device)
+ M.G=G
+ M.SetGParameters()
+ num_img=100_000
+ M.GenerateS(num_img=num_img)
+ M.GetCodeMS()
+ np.set_printoptions(suppress=True)
+
+ #%%
+ M.alpha=[24,16,8,0,-8,-16,-24]
+ M.step=len(M.alpha)
+ M.img_index=0
+ M.num_images=10
+ lindex,bname=6,501
+# M.
+ M.manipulate_layers=[lindex]
+ codes,out=M.EditOneC(bname) #dlatent_tmp
+ tmp=str(M.manipulate_layers)+'_'+str(bname)
+ M.Vis(tmp,'c',out)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/global_torch/npy/ffhq/fs3.npy b/global_torch/npy/ffhq/fs3.npy
new file mode 100644
index 0000000..ef9dc0a
Binary files /dev/null and b/global_torch/npy/ffhq/fs3.npy differ
diff --git a/global_torch/npy/human/fs3.npy b/global_torch/npy/human/fs3.npy
new file mode 100644
index 0000000..5b9dd0d
Binary files /dev/null and b/global_torch/npy/human/fs3.npy differ
diff --git a/global_torch/torch_utils/__init__.py b/global_torch/torch_utils/__init__.py
new file mode 100644
index 0000000..ece0ea0
--- /dev/null
+++ b/global_torch/torch_utils/__init__.py
@@ -0,0 +1,9 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+# empty
diff --git a/global_torch/torch_utils/custom_ops.py b/global_torch/torch_utils/custom_ops.py
new file mode 100644
index 0000000..4cc4e43
--- /dev/null
+++ b/global_torch/torch_utils/custom_ops.py
@@ -0,0 +1,126 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+import os
+import glob
+import torch
+import torch.utils.cpp_extension
+import importlib
+import hashlib
+import shutil
+from pathlib import Path
+
+from torch.utils.file_baton import FileBaton
+
+#----------------------------------------------------------------------------
+# Global options.
+
+verbosity = 'brief' # Verbosity level: 'none', 'brief', 'full'
+
+#----------------------------------------------------------------------------
+# Internal helper funcs.
+
+def _find_compiler_bindir():
+ patterns = [
+ 'C:/Program Files (x86)/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64',
+ 'C:/Program Files (x86)/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64',
+ 'C:/Program Files (x86)/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64',
+ 'C:/Program Files (x86)/Microsoft Visual Studio */vc/bin',
+ ]
+ for pattern in patterns:
+ matches = sorted(glob.glob(pattern))
+ if len(matches):
+ return matches[-1]
+ return None
+
+#----------------------------------------------------------------------------
+# Main entry point for compiling and loading C++/CUDA plugins.
+
+_cached_plugins = dict()
+
+def get_plugin(module_name, sources, **build_kwargs):
+ assert verbosity in ['none', 'brief', 'full']
+
+ # Already cached?
+ if module_name in _cached_plugins:
+ return _cached_plugins[module_name]
+
+ # Print status.
+ if verbosity == 'full':
+ print(f'Setting up PyTorch plugin "{module_name}"...')
+ elif verbosity == 'brief':
+ print(f'Setting up PyTorch plugin "{module_name}"... ', end='', flush=True)
+
+ try: # pylint: disable=too-many-nested-blocks
+ # Make sure we can find the necessary compiler binaries.
+ if os.name == 'nt' and os.system("where cl.exe >nul 2>nul") != 0:
+ compiler_bindir = _find_compiler_bindir()
+ if compiler_bindir is None:
+ raise RuntimeError(f'Could not find MSVC/GCC/CLANG installation on this computer. Check _find_compiler_bindir() in "{__file__}".')
+ os.environ['PATH'] += ';' + compiler_bindir
+
+ # Compile and load.
+ verbose_build = (verbosity == 'full')
+
+ # Incremental build md5sum trickery. Copies all the input source files
+ # into a cached build directory under a combined md5 digest of the input
+ # source files. Copying is done only if the combined digest has changed.
+ # This keeps input file timestamps and filenames the same as in previous
+ # extension builds, allowing for fast incremental rebuilds.
+ #
+ # This optimization is done only in case all the source files reside in
+ # a single directory (just for simplicity) and if the TORCH_EXTENSIONS_DIR
+ # environment variable is set (we take this as a signal that the user
+ # actually cares about this.)
+ source_dirs_set = set(os.path.dirname(source) for source in sources)
+ if len(source_dirs_set) == 1 and ('TORCH_EXTENSIONS_DIR' in os.environ):
+ all_source_files = sorted(list(x for x in Path(list(source_dirs_set)[0]).iterdir() if x.is_file()))
+
+ # Compute a combined hash digest for all source files in the same
+ # custom op directory (usually .cu, .cpp, .py and .h files).
+ hash_md5 = hashlib.md5()
+ for src in all_source_files:
+ with open(src, 'rb') as f:
+ hash_md5.update(f.read())
+ build_dir = torch.utils.cpp_extension._get_build_directory(module_name, verbose=verbose_build) # pylint: disable=protected-access
+ digest_build_dir = os.path.join(build_dir, hash_md5.hexdigest())
+
+ if not os.path.isdir(digest_build_dir):
+ os.makedirs(digest_build_dir, exist_ok=True)
+ baton = FileBaton(os.path.join(digest_build_dir, 'lock'))
+ if baton.try_acquire():
+ try:
+ for src in all_source_files:
+ shutil.copyfile(src, os.path.join(digest_build_dir, os.path.basename(src)))
+ finally:
+ baton.release()
+ else:
+ # Someone else is copying source files under the digest dir,
+ # wait until done and continue.
+ baton.wait()
+ digest_sources = [os.path.join(digest_build_dir, os.path.basename(x)) for x in sources]
+ torch.utils.cpp_extension.load(name=module_name, build_directory=build_dir,
+ verbose=verbose_build, sources=digest_sources, **build_kwargs)
+ else:
+ torch.utils.cpp_extension.load(name=module_name, verbose=verbose_build, sources=sources, **build_kwargs)
+ module = importlib.import_module(module_name)
+
+ except:
+ if verbosity == 'brief':
+ print('Failed!')
+ raise
+
+ # Print status and add to cache.
+ if verbosity == 'full':
+ print(f'Done setting up PyTorch plugin "{module_name}".')
+ elif verbosity == 'brief':
+ print('Done.')
+ _cached_plugins[module_name] = module
+ return module
+
+#----------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/misc.py b/global_torch/torch_utils/misc.py
new file mode 100644
index 0000000..7829f4d
--- /dev/null
+++ b/global_torch/torch_utils/misc.py
@@ -0,0 +1,262 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+import re
+import contextlib
+import numpy as np
+import torch
+import warnings
+import dnnlib
+
+#----------------------------------------------------------------------------
+# Cached construction of constant tensors. Avoids CPU=>GPU copy when the
+# same constant is used multiple times.
+
+_constant_cache = dict()
+
+def constant(value, shape=None, dtype=None, device=None, memory_format=None):
+ value = np.asarray(value)
+ if shape is not None:
+ shape = tuple(shape)
+ if dtype is None:
+ dtype = torch.get_default_dtype()
+ if device is None:
+ device = torch.device('cpu')
+ if memory_format is None:
+ memory_format = torch.contiguous_format
+
+ key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format)
+ tensor = _constant_cache.get(key, None)
+ if tensor is None:
+ tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
+ if shape is not None:
+ tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
+ tensor = tensor.contiguous(memory_format=memory_format)
+ _constant_cache[key] = tensor
+ return tensor
+
+#----------------------------------------------------------------------------
+# Replace NaN/Inf with specified numerical values.
+
+try:
+ nan_to_num = torch.nan_to_num # 1.8.0a0
+except AttributeError:
+ def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None): # pylint: disable=redefined-builtin
+ assert isinstance(input, torch.Tensor)
+ if posinf is None:
+ posinf = torch.finfo(input.dtype).max
+ if neginf is None:
+ neginf = torch.finfo(input.dtype).min
+ assert nan == 0
+ return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out)
+
+#----------------------------------------------------------------------------
+# Symbolic assert.
+
+try:
+ symbolic_assert = torch._assert # 1.8.0a0 # pylint: disable=protected-access
+except AttributeError:
+ symbolic_assert = torch.Assert # 1.7.0
+
+#----------------------------------------------------------------------------
+# Context manager to suppress known warnings in torch.jit.trace().
+
+class suppress_tracer_warnings(warnings.catch_warnings):
+ def __enter__(self):
+ super().__enter__()
+ warnings.simplefilter('ignore', category=torch.jit.TracerWarning)
+ return self
+
+#----------------------------------------------------------------------------
+# Assert that the shape of a tensor matches the given list of integers.
+# None indicates that the size of a dimension is allowed to vary.
+# Performs symbolic assertion when used in torch.jit.trace().
+
+def assert_shape(tensor, ref_shape):
+ if tensor.ndim != len(ref_shape):
+ raise AssertionError(f'Wrong number of dimensions: got {tensor.ndim}, expected {len(ref_shape)}')
+ for idx, (size, ref_size) in enumerate(zip(tensor.shape, ref_shape)):
+ if ref_size is None:
+ pass
+ elif isinstance(ref_size, torch.Tensor):
+ with suppress_tracer_warnings(): # as_tensor results are registered as constants
+ symbolic_assert(torch.equal(torch.as_tensor(size), ref_size), f'Wrong size for dimension {idx}')
+ elif isinstance(size, torch.Tensor):
+ with suppress_tracer_warnings(): # as_tensor results are registered as constants
+ symbolic_assert(torch.equal(size, torch.as_tensor(ref_size)), f'Wrong size for dimension {idx}: expected {ref_size}')
+ elif size != ref_size:
+ raise AssertionError(f'Wrong size for dimension {idx}: got {size}, expected {ref_size}')
+
+#----------------------------------------------------------------------------
+# Function decorator that calls torch.autograd.profiler.record_function().
+
+def profiled_function(fn):
+ def decorator(*args, **kwargs):
+ with torch.autograd.profiler.record_function(fn.__name__):
+ return fn(*args, **kwargs)
+ decorator.__name__ = fn.__name__
+ return decorator
+
+#----------------------------------------------------------------------------
+# Sampler for torch.utils.data.DataLoader that loops over the dataset
+# indefinitely, shuffling items as it goes.
+
+class InfiniteSampler(torch.utils.data.Sampler):
+ def __init__(self, dataset, rank=0, num_replicas=1, shuffle=True, seed=0, window_size=0.5):
+ assert len(dataset) > 0
+ assert num_replicas > 0
+ assert 0 <= rank < num_replicas
+ assert 0 <= window_size <= 1
+ super().__init__(dataset)
+ self.dataset = dataset
+ self.rank = rank
+ self.num_replicas = num_replicas
+ self.shuffle = shuffle
+ self.seed = seed
+ self.window_size = window_size
+
+ def __iter__(self):
+ order = np.arange(len(self.dataset))
+ rnd = None
+ window = 0
+ if self.shuffle:
+ rnd = np.random.RandomState(self.seed)
+ rnd.shuffle(order)
+ window = int(np.rint(order.size * self.window_size))
+
+ idx = 0
+ while True:
+ i = idx % order.size
+ if idx % self.num_replicas == self.rank:
+ yield order[i]
+ if window >= 2:
+ j = (i - rnd.randint(window)) % order.size
+ order[i], order[j] = order[j], order[i]
+ idx += 1
+
+#----------------------------------------------------------------------------
+# Utilities for operating with torch.nn.Module parameters and buffers.
+
+def params_and_buffers(module):
+ assert isinstance(module, torch.nn.Module)
+ return list(module.parameters()) + list(module.buffers())
+
+def named_params_and_buffers(module):
+ assert isinstance(module, torch.nn.Module)
+ return list(module.named_parameters()) + list(module.named_buffers())
+
+def copy_params_and_buffers(src_module, dst_module, require_all=False):
+ assert isinstance(src_module, torch.nn.Module)
+ assert isinstance(dst_module, torch.nn.Module)
+ src_tensors = {name: tensor for name, tensor in named_params_and_buffers(src_module)}
+ for name, tensor in named_params_and_buffers(dst_module):
+ assert (name in src_tensors) or (not require_all)
+ if name in src_tensors:
+ tensor.copy_(src_tensors[name].detach()).requires_grad_(tensor.requires_grad)
+
+#----------------------------------------------------------------------------
+# Context manager for easily enabling/disabling DistributedDataParallel
+# synchronization.
+
+@contextlib.contextmanager
+def ddp_sync(module, sync):
+ assert isinstance(module, torch.nn.Module)
+ if sync or not isinstance(module, torch.nn.parallel.DistributedDataParallel):
+ yield
+ else:
+ with module.no_sync():
+ yield
+
+#----------------------------------------------------------------------------
+# Check DistributedDataParallel consistency across processes.
+
+def check_ddp_consistency(module, ignore_regex=None):
+ assert isinstance(module, torch.nn.Module)
+ for name, tensor in named_params_and_buffers(module):
+ fullname = type(module).__name__ + '.' + name
+ if ignore_regex is not None and re.fullmatch(ignore_regex, fullname):
+ continue
+ tensor = tensor.detach()
+ other = tensor.clone()
+ torch.distributed.broadcast(tensor=other, src=0)
+ assert (nan_to_num(tensor) == nan_to_num(other)).all(), fullname
+
+#----------------------------------------------------------------------------
+# Print summary table of module hierarchy.
+
+def print_module_summary(module, inputs, max_nesting=3, skip_redundant=True):
+ assert isinstance(module, torch.nn.Module)
+ assert not isinstance(module, torch.jit.ScriptModule)
+ assert isinstance(inputs, (tuple, list))
+
+ # Register hooks.
+ entries = []
+ nesting = [0]
+ def pre_hook(_mod, _inputs):
+ nesting[0] += 1
+ def post_hook(mod, _inputs, outputs):
+ nesting[0] -= 1
+ if nesting[0] <= max_nesting:
+ outputs = list(outputs) if isinstance(outputs, (tuple, list)) else [outputs]
+ outputs = [t for t in outputs if isinstance(t, torch.Tensor)]
+ entries.append(dnnlib.EasyDict(mod=mod, outputs=outputs))
+ hooks = [mod.register_forward_pre_hook(pre_hook) for mod in module.modules()]
+ hooks += [mod.register_forward_hook(post_hook) for mod in module.modules()]
+
+ # Run module.
+ outputs = module(*inputs)
+ for hook in hooks:
+ hook.remove()
+
+ # Identify unique outputs, parameters, and buffers.
+ tensors_seen = set()
+ for e in entries:
+ e.unique_params = [t for t in e.mod.parameters() if id(t) not in tensors_seen]
+ e.unique_buffers = [t for t in e.mod.buffers() if id(t) not in tensors_seen]
+ e.unique_outputs = [t for t in e.outputs if id(t) not in tensors_seen]
+ tensors_seen |= {id(t) for t in e.unique_params + e.unique_buffers + e.unique_outputs}
+
+ # Filter out redundant entries.
+ if skip_redundant:
+ entries = [e for e in entries if len(e.unique_params) or len(e.unique_buffers) or len(e.unique_outputs)]
+
+ # Construct table.
+ rows = [[type(module).__name__, 'Parameters', 'Buffers', 'Output shape', 'Datatype']]
+ rows += [['---'] * len(rows[0])]
+ param_total = 0
+ buffer_total = 0
+ submodule_names = {mod: name for name, mod in module.named_modules()}
+ for e in entries:
+ name = '' if e.mod is module else submodule_names[e.mod]
+ param_size = sum(t.numel() for t in e.unique_params)
+ buffer_size = sum(t.numel() for t in e.unique_buffers)
+ output_shapes = [str(list(e.outputs[0].shape)) for t in e.outputs]
+ output_dtypes = [str(t.dtype).split('.')[-1] for t in e.outputs]
+ rows += [[
+ name + (':0' if len(e.outputs) >= 2 else ''),
+ str(param_size) if param_size else '-',
+ str(buffer_size) if buffer_size else '-',
+ (output_shapes + ['-'])[0],
+ (output_dtypes + ['-'])[0],
+ ]]
+ for idx in range(1, len(e.outputs)):
+ rows += [[name + f':{idx}', '-', '-', output_shapes[idx], output_dtypes[idx]]]
+ param_total += param_size
+ buffer_total += buffer_size
+ rows += [['---'] * len(rows[0])]
+ rows += [['Total', str(param_total), str(buffer_total), '-', '-']]
+
+ # Print table.
+ widths = [max(len(cell) for cell in column) for column in zip(*rows)]
+ print()
+ for row in rows:
+ print(' '.join(cell + ' ' * (width - len(cell)) for cell, width in zip(row, widths)))
+ print()
+ return outputs
+
+#----------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/ops/__init__.py b/global_torch/torch_utils/ops/__init__.py
new file mode 100644
index 0000000..ece0ea0
--- /dev/null
+++ b/global_torch/torch_utils/ops/__init__.py
@@ -0,0 +1,9 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+# empty
diff --git a/global_torch/torch_utils/ops/bias_act.cpp b/global_torch/torch_utils/ops/bias_act.cpp
new file mode 100644
index 0000000..5d2425d
--- /dev/null
+++ b/global_torch/torch_utils/ops/bias_act.cpp
@@ -0,0 +1,99 @@
+// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include
+#include
+#include
+#include "bias_act.h"
+
+//------------------------------------------------------------------------
+
+static bool has_same_layout(torch::Tensor x, torch::Tensor y)
+{
+ if (x.dim() != y.dim())
+ return false;
+ for (int64_t i = 0; i < x.dim(); i++)
+ {
+ if (x.size(i) != y.size(i))
+ return false;
+ if (x.size(i) >= 2 && x.stride(i) != y.stride(i))
+ return false;
+ }
+ return true;
+}
+
+//------------------------------------------------------------------------
+
+static torch::Tensor bias_act(torch::Tensor x, torch::Tensor b, torch::Tensor xref, torch::Tensor yref, torch::Tensor dy, int grad, int dim, int act, float alpha, float gain, float clamp)
+{
+ // Validate arguments.
+ TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
+ TORCH_CHECK(b.numel() == 0 || (b.dtype() == x.dtype() && b.device() == x.device()), "b must have the same dtype and device as x");
+ TORCH_CHECK(xref.numel() == 0 || (xref.sizes() == x.sizes() && xref.dtype() == x.dtype() && xref.device() == x.device()), "xref must have the same shape, dtype, and device as x");
+ TORCH_CHECK(yref.numel() == 0 || (yref.sizes() == x.sizes() && yref.dtype() == x.dtype() && yref.device() == x.device()), "yref must have the same shape, dtype, and device as x");
+ TORCH_CHECK(dy.numel() == 0 || (dy.sizes() == x.sizes() && dy.dtype() == x.dtype() && dy.device() == x.device()), "dy must have the same dtype and device as x");
+ TORCH_CHECK(x.numel() <= INT_MAX, "x is too large");
+ TORCH_CHECK(b.dim() == 1, "b must have rank 1");
+ TORCH_CHECK(b.numel() == 0 || (dim >= 0 && dim < x.dim()), "dim is out of bounds");
+ TORCH_CHECK(b.numel() == 0 || b.numel() == x.size(dim), "b has wrong number of elements");
+ TORCH_CHECK(grad >= 0, "grad must be non-negative");
+
+ // Validate layout.
+ TORCH_CHECK(x.is_non_overlapping_and_dense(), "x must be non-overlapping and dense");
+ TORCH_CHECK(b.is_contiguous(), "b must be contiguous");
+ TORCH_CHECK(xref.numel() == 0 || has_same_layout(xref, x), "xref must have the same layout as x");
+ TORCH_CHECK(yref.numel() == 0 || has_same_layout(yref, x), "yref must have the same layout as x");
+ TORCH_CHECK(dy.numel() == 0 || has_same_layout(dy, x), "dy must have the same layout as x");
+
+ // Create output tensor.
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
+ torch::Tensor y = torch::empty_like(x);
+ TORCH_CHECK(has_same_layout(y, x), "y must have the same layout as x");
+
+ // Initialize CUDA kernel parameters.
+ bias_act_kernel_params p;
+ p.x = x.data_ptr();
+ p.b = (b.numel()) ? b.data_ptr() : NULL;
+ p.xref = (xref.numel()) ? xref.data_ptr() : NULL;
+ p.yref = (yref.numel()) ? yref.data_ptr() : NULL;
+ p.dy = (dy.numel()) ? dy.data_ptr() : NULL;
+ p.y = y.data_ptr();
+ p.grad = grad;
+ p.act = act;
+ p.alpha = alpha;
+ p.gain = gain;
+ p.clamp = clamp;
+ p.sizeX = (int)x.numel();
+ p.sizeB = (int)b.numel();
+ p.stepB = (b.numel()) ? (int)x.stride(dim) : 1;
+
+ // Choose CUDA kernel.
+ void* kernel;
+ AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&]
+ {
+ kernel = choose_bias_act_kernel(p);
+ });
+ TORCH_CHECK(kernel, "no CUDA kernel found for the specified activation func");
+
+ // Launch CUDA kernel.
+ p.loopX = 4;
+ int blockSize = 4 * 32;
+ int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1;
+ void* args[] = {&p};
+ AT_CUDA_CHECK(cudaLaunchKernel(kernel, gridSize, blockSize, args, 0, at::cuda::getCurrentCUDAStream()));
+ return y;
+}
+
+//------------------------------------------------------------------------
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
+{
+ m.def("bias_act", &bias_act);
+}
+
+//------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/ops/bias_act.cu b/global_torch/torch_utils/ops/bias_act.cu
new file mode 100644
index 0000000..dd8fc47
--- /dev/null
+++ b/global_torch/torch_utils/ops/bias_act.cu
@@ -0,0 +1,173 @@
+// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include
+#include "bias_act.h"
+
+//------------------------------------------------------------------------
+// Helpers.
+
+template struct InternalType;
+template <> struct InternalType { typedef double scalar_t; };
+template <> struct InternalType { typedef float scalar_t; };
+template <> struct InternalType { typedef float scalar_t; };
+
+//------------------------------------------------------------------------
+// CUDA kernel.
+
+template
+__global__ void bias_act_kernel(bias_act_kernel_params p)
+{
+ typedef typename InternalType::scalar_t scalar_t;
+ int G = p.grad;
+ scalar_t alpha = (scalar_t)p.alpha;
+ scalar_t gain = (scalar_t)p.gain;
+ scalar_t clamp = (scalar_t)p.clamp;
+ scalar_t one = (scalar_t)1;
+ scalar_t two = (scalar_t)2;
+ scalar_t expRange = (scalar_t)80;
+ scalar_t halfExpRange = (scalar_t)40;
+ scalar_t seluScale = (scalar_t)1.0507009873554804934193349852946;
+ scalar_t seluAlpha = (scalar_t)1.6732632423543772848170429916717;
+
+ // Loop over elements.
+ int xi = blockIdx.x * p.loopX * blockDim.x + threadIdx.x;
+ for (int loopIdx = 0; loopIdx < p.loopX && xi < p.sizeX; loopIdx++, xi += blockDim.x)
+ {
+ // Load.
+ scalar_t x = (scalar_t)((const T*)p.x)[xi];
+ scalar_t b = (p.b) ? (scalar_t)((const T*)p.b)[(xi / p.stepB) % p.sizeB] : 0;
+ scalar_t xref = (p.xref) ? (scalar_t)((const T*)p.xref)[xi] : 0;
+ scalar_t yref = (p.yref) ? (scalar_t)((const T*)p.yref)[xi] : 0;
+ scalar_t dy = (p.dy) ? (scalar_t)((const T*)p.dy)[xi] : one;
+ scalar_t yy = (gain != 0) ? yref / gain : 0;
+ scalar_t y = 0;
+
+ // Apply bias.
+ ((G == 0) ? x : xref) += b;
+
+ // linear
+ if (A == 1)
+ {
+ if (G == 0) y = x;
+ if (G == 1) y = x;
+ }
+
+ // relu
+ if (A == 2)
+ {
+ if (G == 0) y = (x > 0) ? x : 0;
+ if (G == 1) y = (yy > 0) ? x : 0;
+ }
+
+ // lrelu
+ if (A == 3)
+ {
+ if (G == 0) y = (x > 0) ? x : x * alpha;
+ if (G == 1) y = (yy > 0) ? x : x * alpha;
+ }
+
+ // tanh
+ if (A == 4)
+ {
+ if (G == 0) { scalar_t c = exp(x); scalar_t d = one / c; y = (x < -expRange) ? -one : (x > expRange) ? one : (c - d) / (c + d); }
+ if (G == 1) y = x * (one - yy * yy);
+ if (G == 2) y = x * (one - yy * yy) * (-two * yy);
+ }
+
+ // sigmoid
+ if (A == 5)
+ {
+ if (G == 0) y = (x < -expRange) ? 0 : one / (exp(-x) + one);
+ if (G == 1) y = x * yy * (one - yy);
+ if (G == 2) y = x * yy * (one - yy) * (one - two * yy);
+ }
+
+ // elu
+ if (A == 6)
+ {
+ if (G == 0) y = (x >= 0) ? x : exp(x) - one;
+ if (G == 1) y = (yy >= 0) ? x : x * (yy + one);
+ if (G == 2) y = (yy >= 0) ? 0 : x * (yy + one);
+ }
+
+ // selu
+ if (A == 7)
+ {
+ if (G == 0) y = (x >= 0) ? seluScale * x : (seluScale * seluAlpha) * (exp(x) - one);
+ if (G == 1) y = (yy >= 0) ? x * seluScale : x * (yy + seluScale * seluAlpha);
+ if (G == 2) y = (yy >= 0) ? 0 : x * (yy + seluScale * seluAlpha);
+ }
+
+ // softplus
+ if (A == 8)
+ {
+ if (G == 0) y = (x > expRange) ? x : log(exp(x) + one);
+ if (G == 1) y = x * (one - exp(-yy));
+ if (G == 2) { scalar_t c = exp(-yy); y = x * c * (one - c); }
+ }
+
+ // swish
+ if (A == 9)
+ {
+ if (G == 0)
+ y = (x < -expRange) ? 0 : x / (exp(-x) + one);
+ else
+ {
+ scalar_t c = exp(xref);
+ scalar_t d = c + one;
+ if (G == 1)
+ y = (xref > halfExpRange) ? x : x * c * (xref + d) / (d * d);
+ else
+ y = (xref > halfExpRange) ? 0 : x * c * (xref * (two - d) + two * d) / (d * d * d);
+ yref = (xref < -expRange) ? 0 : xref / (exp(-xref) + one) * gain;
+ }
+ }
+
+ // Apply gain.
+ y *= gain * dy;
+
+ // Clamp.
+ if (clamp >= 0)
+ {
+ if (G == 0)
+ y = (y > -clamp & y < clamp) ? y : (y >= 0) ? clamp : -clamp;
+ else
+ y = (yref > -clamp & yref < clamp) ? y : 0;
+ }
+
+ // Store.
+ ((T*)p.y)[xi] = (T)y;
+ }
+}
+
+//------------------------------------------------------------------------
+// CUDA kernel selection.
+
+template void* choose_bias_act_kernel(const bias_act_kernel_params& p)
+{
+ if (p.act == 1) return (void*)bias_act_kernel;
+ if (p.act == 2) return (void*)bias_act_kernel;
+ if (p.act == 3) return (void*)bias_act_kernel;
+ if (p.act == 4) return (void*)bias_act_kernel;
+ if (p.act == 5) return (void*)bias_act_kernel;
+ if (p.act == 6) return (void*)bias_act_kernel;
+ if (p.act == 7) return (void*)bias_act_kernel;
+ if (p.act == 8) return (void*)bias_act_kernel;
+ if (p.act == 9) return (void*)bias_act_kernel;
+ return NULL;
+}
+
+//------------------------------------------------------------------------
+// Template specializations.
+
+template void* choose_bias_act_kernel (const bias_act_kernel_params& p);
+template void* choose_bias_act_kernel (const bias_act_kernel_params& p);
+template void* choose_bias_act_kernel (const bias_act_kernel_params& p);
+
+//------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/ops/bias_act.h b/global_torch/torch_utils/ops/bias_act.h
new file mode 100644
index 0000000..a32187e
--- /dev/null
+++ b/global_torch/torch_utils/ops/bias_act.h
@@ -0,0 +1,38 @@
+// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+//------------------------------------------------------------------------
+// CUDA kernel parameters.
+
+struct bias_act_kernel_params
+{
+ const void* x; // [sizeX]
+ const void* b; // [sizeB] or NULL
+ const void* xref; // [sizeX] or NULL
+ const void* yref; // [sizeX] or NULL
+ const void* dy; // [sizeX] or NULL
+ void* y; // [sizeX]
+
+ int grad;
+ int act;
+ float alpha;
+ float gain;
+ float clamp;
+
+ int sizeX;
+ int sizeB;
+ int stepB;
+ int loopX;
+};
+
+//------------------------------------------------------------------------
+// CUDA kernel selection.
+
+template void* choose_bias_act_kernel(const bias_act_kernel_params& p);
+
+//------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/ops/bias_act.py b/global_torch/torch_utils/ops/bias_act.py
new file mode 100644
index 0000000..4bcb409
--- /dev/null
+++ b/global_torch/torch_utils/ops/bias_act.py
@@ -0,0 +1,212 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+"""Custom PyTorch ops for efficient bias and activation."""
+
+import os
+import warnings
+import numpy as np
+import torch
+import dnnlib
+import traceback
+
+from .. import custom_ops
+from .. import misc
+
+#----------------------------------------------------------------------------
+
+activation_funcs = {
+ 'linear': dnnlib.EasyDict(func=lambda x, **_: x, def_alpha=0, def_gain=1, cuda_idx=1, ref='', has_2nd_grad=False),
+ 'relu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.relu(x), def_alpha=0, def_gain=np.sqrt(2), cuda_idx=2, ref='y', has_2nd_grad=False),
+ 'lrelu': dnnlib.EasyDict(func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha), def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y', has_2nd_grad=False),
+ 'tanh': dnnlib.EasyDict(func=lambda x, **_: torch.tanh(x), def_alpha=0, def_gain=1, cuda_idx=4, ref='y', has_2nd_grad=True),
+ 'sigmoid': dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x), def_alpha=0, def_gain=1, cuda_idx=5, ref='y', has_2nd_grad=True),
+ 'elu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.elu(x), def_alpha=0, def_gain=1, cuda_idx=6, ref='y', has_2nd_grad=True),
+ 'selu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.selu(x), def_alpha=0, def_gain=1, cuda_idx=7, ref='y', has_2nd_grad=True),
+ 'softplus': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.softplus(x), def_alpha=0, def_gain=1, cuda_idx=8, ref='y', has_2nd_grad=True),
+ 'swish': dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x) * x, def_alpha=0, def_gain=np.sqrt(2), cuda_idx=9, ref='x', has_2nd_grad=True),
+}
+
+#----------------------------------------------------------------------------
+
+_inited = False
+_plugin = None
+_null_tensor = torch.empty([0])
+
+def _init():
+ global _inited, _plugin
+ if not _inited:
+ _inited = True
+ sources = ['bias_act.cpp', 'bias_act.cu']
+ sources = [os.path.join(os.path.dirname(__file__), s) for s in sources]
+ try:
+ _plugin = custom_ops.get_plugin('bias_act_plugin', sources=sources, extra_cuda_cflags=['--use_fast_math'])
+ except:
+ warnings.warn('Failed to build CUDA kernels for bias_act. Falling back to slow reference implementation. Details:\n\n' + traceback.format_exc())
+ return _plugin is not None
+
+#----------------------------------------------------------------------------
+
+def bias_act(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None, impl='cuda'):
+ r"""Fused bias and activation function.
+
+ Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
+ and scales the result by `gain`. Each of the steps is optional. In most cases,
+ the fused op is considerably more efficient than performing the same calculation
+ using standard PyTorch ops. It supports first and second order gradients,
+ but not third order gradients.
+
+ Args:
+ x: Input activation tensor. Can be of any shape.
+ b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
+ as `x`. The shape must be known, and it must match the dimension of `x`
+ corresponding to `dim`.
+ dim: The dimension in `x` corresponding to the elements of `b`.
+ The value of `dim` is ignored if `b` is not specified.
+ act: Name of the activation function to evaluate, or `"linear"` to disable.
+ Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc.
+ See `activation_funcs` for a full list. `None` is not allowed.
+ alpha: Shape parameter for the activation function, or `None` to use the default.
+ gain: Scaling factor for the output tensor, or `None` to use default.
+ See `activation_funcs` for the default scaling of each activation function.
+ If unsure, consider specifying 1.
+ clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable
+ the clamping (default).
+ impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
+
+ Returns:
+ Tensor of the same shape and datatype as `x`.
+ """
+ assert isinstance(x, torch.Tensor)
+ assert impl in ['ref', 'cuda']
+ if impl == 'cuda' and x.device.type == 'cuda' and _init():
+ return _bias_act_cuda(dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp).apply(x, b)
+ return _bias_act_ref(x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp)
+
+#----------------------------------------------------------------------------
+
+@misc.profiled_function
+def _bias_act_ref(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None):
+ """Slow reference implementation of `bias_act()` using standard TensorFlow ops.
+ """
+ assert isinstance(x, torch.Tensor)
+ assert clamp is None or clamp >= 0
+ spec = activation_funcs[act]
+ alpha = float(alpha if alpha is not None else spec.def_alpha)
+ gain = float(gain if gain is not None else spec.def_gain)
+ clamp = float(clamp if clamp is not None else -1)
+
+ # Add bias.
+ if b is not None:
+ assert isinstance(b, torch.Tensor) and b.ndim == 1
+ assert 0 <= dim < x.ndim
+ assert b.shape[0] == x.shape[dim]
+ x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)])
+
+ # Evaluate activation function.
+ alpha = float(alpha)
+ x = spec.func(x, alpha=alpha)
+
+ # Scale by gain.
+ gain = float(gain)
+ if gain != 1:
+ x = x * gain
+
+ # Clamp.
+ if clamp >= 0:
+ x = x.clamp(-clamp, clamp) # pylint: disable=invalid-unary-operand-type
+ return x
+
+#----------------------------------------------------------------------------
+
+_bias_act_cuda_cache = dict()
+
+def _bias_act_cuda(dim=1, act='linear', alpha=None, gain=None, clamp=None):
+ """Fast CUDA implementation of `bias_act()` using custom ops.
+ """
+ # Parse arguments.
+ assert clamp is None or clamp >= 0
+ spec = activation_funcs[act]
+ alpha = float(alpha if alpha is not None else spec.def_alpha)
+ gain = float(gain if gain is not None else spec.def_gain)
+ clamp = float(clamp if clamp is not None else -1)
+
+ # Lookup from cache.
+ key = (dim, act, alpha, gain, clamp)
+ if key in _bias_act_cuda_cache:
+ return _bias_act_cuda_cache[key]
+
+ # Forward op.
+ class BiasActCuda(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, x, b): # pylint: disable=arguments-differ
+ ctx.memory_format = torch.channels_last if x.ndim > 2 and x.stride()[1] == 1 else torch.contiguous_format
+ x = x.contiguous(memory_format=ctx.memory_format)
+ b = b.contiguous() if b is not None else _null_tensor
+ y = x
+ if act != 'linear' or gain != 1 or clamp >= 0 or b is not _null_tensor:
+ y = _plugin.bias_act(x, b, _null_tensor, _null_tensor, _null_tensor, 0, dim, spec.cuda_idx, alpha, gain, clamp)
+ ctx.save_for_backward(
+ x if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor,
+ b if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor,
+ y if 'y' in spec.ref else _null_tensor)
+ return y
+
+ @staticmethod
+ def backward(ctx, dy): # pylint: disable=arguments-differ
+ dy = dy.contiguous(memory_format=ctx.memory_format)
+ x, b, y = ctx.saved_tensors
+ dx = None
+ db = None
+
+ if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
+ dx = dy
+ if act != 'linear' or gain != 1 or clamp >= 0:
+ dx = BiasActCudaGrad.apply(dy, x, b, y)
+
+ if ctx.needs_input_grad[1]:
+ db = dx.sum([i for i in range(dx.ndim) if i != dim])
+
+ return dx, db
+
+ # Backward op.
+ class BiasActCudaGrad(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, dy, x, b, y): # pylint: disable=arguments-differ
+ ctx.memory_format = torch.channels_last if dy.ndim > 2 and dy.stride()[1] == 1 else torch.contiguous_format
+ dx = _plugin.bias_act(dy, b, x, y, _null_tensor, 1, dim, spec.cuda_idx, alpha, gain, clamp)
+ ctx.save_for_backward(
+ dy if spec.has_2nd_grad else _null_tensor,
+ x, b, y)
+ return dx
+
+ @staticmethod
+ def backward(ctx, d_dx): # pylint: disable=arguments-differ
+ d_dx = d_dx.contiguous(memory_format=ctx.memory_format)
+ dy, x, b, y = ctx.saved_tensors
+ d_dy = None
+ d_x = None
+ d_b = None
+ d_y = None
+
+ if ctx.needs_input_grad[0]:
+ d_dy = BiasActCudaGrad.apply(d_dx, x, b, y)
+
+ if spec.has_2nd_grad and (ctx.needs_input_grad[1] or ctx.needs_input_grad[2]):
+ d_x = _plugin.bias_act(d_dx, b, x, y, dy, 2, dim, spec.cuda_idx, alpha, gain, clamp)
+
+ if spec.has_2nd_grad and ctx.needs_input_grad[2]:
+ d_b = d_x.sum([i for i in range(d_x.ndim) if i != dim])
+
+ return d_dy, d_x, d_b, d_y
+
+ # Add to cache.
+ _bias_act_cuda_cache[key] = BiasActCuda
+ return BiasActCuda
+
+#----------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/ops/conv2d_gradfix.py b/global_torch/torch_utils/ops/conv2d_gradfix.py
new file mode 100644
index 0000000..e95e10d
--- /dev/null
+++ b/global_torch/torch_utils/ops/conv2d_gradfix.py
@@ -0,0 +1,170 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+"""Custom replacement for `torch.nn.functional.conv2d` that supports
+arbitrarily high order gradients with zero performance penalty."""
+
+import warnings
+import contextlib
+import torch
+
+# pylint: disable=redefined-builtin
+# pylint: disable=arguments-differ
+# pylint: disable=protected-access
+
+#----------------------------------------------------------------------------
+
+enabled = False # Enable the custom op by setting this to true.
+weight_gradients_disabled = False # Forcefully disable computation of gradients with respect to the weights.
+
+@contextlib.contextmanager
+def no_weight_gradients():
+ global weight_gradients_disabled
+ old = weight_gradients_disabled
+ weight_gradients_disabled = True
+ yield
+ weight_gradients_disabled = old
+
+#----------------------------------------------------------------------------
+
+def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
+ if _should_use_custom_op(input):
+ return _conv2d_gradfix(transpose=False, weight_shape=weight.shape, stride=stride, padding=padding, output_padding=0, dilation=dilation, groups=groups).apply(input, weight, bias)
+ return torch.nn.functional.conv2d(input=input, weight=weight, bias=bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
+
+def conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1):
+ if _should_use_custom_op(input):
+ return _conv2d_gradfix(transpose=True, weight_shape=weight.shape, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation).apply(input, weight, bias)
+ return torch.nn.functional.conv_transpose2d(input=input, weight=weight, bias=bias, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation)
+
+#----------------------------------------------------------------------------
+
+def _should_use_custom_op(input):
+ assert isinstance(input, torch.Tensor)
+ if (not enabled) or (not torch.backends.cudnn.enabled):
+ return False
+ if input.device.type != 'cuda':
+ return False
+ if any(torch.__version__.startswith(x) for x in ['1.7.', '1.8.', '1.9']):
+ return True
+ warnings.warn(f'conv2d_gradfix not supported on PyTorch {torch.__version__}. Falling back to torch.nn.functional.conv2d().')
+ return False
+
+def _tuple_of_ints(xs, ndim):
+ xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim
+ assert len(xs) == ndim
+ assert all(isinstance(x, int) for x in xs)
+ return xs
+
+#----------------------------------------------------------------------------
+
+_conv2d_gradfix_cache = dict()
+
+def _conv2d_gradfix(transpose, weight_shape, stride, padding, output_padding, dilation, groups):
+ # Parse arguments.
+ ndim = 2
+ weight_shape = tuple(weight_shape)
+ stride = _tuple_of_ints(stride, ndim)
+ padding = _tuple_of_ints(padding, ndim)
+ output_padding = _tuple_of_ints(output_padding, ndim)
+ dilation = _tuple_of_ints(dilation, ndim)
+
+ # Lookup from cache.
+ key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
+ if key in _conv2d_gradfix_cache:
+ return _conv2d_gradfix_cache[key]
+
+ # Validate arguments.
+ assert groups >= 1
+ assert len(weight_shape) == ndim + 2
+ assert all(stride[i] >= 1 for i in range(ndim))
+ assert all(padding[i] >= 0 for i in range(ndim))
+ assert all(dilation[i] >= 0 for i in range(ndim))
+ if not transpose:
+ assert all(output_padding[i] == 0 for i in range(ndim))
+ else: # transpose
+ assert all(0 <= output_padding[i] < max(stride[i], dilation[i]) for i in range(ndim))
+
+ # Helpers.
+ common_kwargs = dict(stride=stride, padding=padding, dilation=dilation, groups=groups)
+ def calc_output_padding(input_shape, output_shape):
+ if transpose:
+ return [0, 0]
+ return [
+ input_shape[i + 2]
+ - (output_shape[i + 2] - 1) * stride[i]
+ - (1 - 2 * padding[i])
+ - dilation[i] * (weight_shape[i + 2] - 1)
+ for i in range(ndim)
+ ]
+
+ # Forward & backward.
+ class Conv2d(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, input, weight, bias):
+ assert weight.shape == weight_shape
+ if not transpose:
+ output = torch.nn.functional.conv2d(input=input, weight=weight, bias=bias, **common_kwargs)
+ else: # transpose
+ output = torch.nn.functional.conv_transpose2d(input=input, weight=weight, bias=bias, output_padding=output_padding, **common_kwargs)
+ ctx.save_for_backward(input, weight)
+ return output
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ input, weight = ctx.saved_tensors
+ grad_input = None
+ grad_weight = None
+ grad_bias = None
+
+ if ctx.needs_input_grad[0]:
+ p = calc_output_padding(input_shape=input.shape, output_shape=grad_output.shape)
+ grad_input = _conv2d_gradfix(transpose=(not transpose), weight_shape=weight_shape, output_padding=p, **common_kwargs).apply(grad_output, weight, None)
+ assert grad_input.shape == input.shape
+
+ if ctx.needs_input_grad[1] and not weight_gradients_disabled:
+ grad_weight = Conv2dGradWeight.apply(grad_output, input)
+ assert grad_weight.shape == weight_shape
+
+ if ctx.needs_input_grad[2]:
+ grad_bias = grad_output.sum([0, 2, 3])
+
+ return grad_input, grad_weight, grad_bias
+
+ # Gradient with respect to the weights.
+ class Conv2dGradWeight(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, grad_output, input):
+ op = torch._C._jit_get_operation('aten::cudnn_convolution_backward_weight' if not transpose else 'aten::cudnn_convolution_transpose_backward_weight')
+ flags = [torch.backends.cudnn.benchmark, torch.backends.cudnn.deterministic, torch.backends.cudnn.allow_tf32]
+ grad_weight = op(weight_shape, grad_output, input, padding, stride, dilation, groups, *flags)
+ assert grad_weight.shape == weight_shape
+ ctx.save_for_backward(grad_output, input)
+ return grad_weight
+
+ @staticmethod
+ def backward(ctx, grad2_grad_weight):
+ grad_output, input = ctx.saved_tensors
+ grad2_grad_output = None
+ grad2_input = None
+
+ if ctx.needs_input_grad[0]:
+ grad2_grad_output = Conv2d.apply(input, grad2_grad_weight, None)
+ assert grad2_grad_output.shape == grad_output.shape
+
+ if ctx.needs_input_grad[1]:
+ p = calc_output_padding(input_shape=input.shape, output_shape=grad_output.shape)
+ grad2_input = _conv2d_gradfix(transpose=(not transpose), weight_shape=weight_shape, output_padding=p, **common_kwargs).apply(grad_output, grad2_grad_weight, None)
+ assert grad2_input.shape == input.shape
+
+ return grad2_grad_output, grad2_input
+
+ _conv2d_gradfix_cache[key] = Conv2d
+ return Conv2d
+
+#----------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/ops/conv2d_resample.py b/global_torch/torch_utils/ops/conv2d_resample.py
new file mode 100644
index 0000000..cd47507
--- /dev/null
+++ b/global_torch/torch_utils/ops/conv2d_resample.py
@@ -0,0 +1,156 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+"""2D convolution with optional up/downsampling."""
+
+import torch
+
+from .. import misc
+from . import conv2d_gradfix
+from . import upfirdn2d
+from .upfirdn2d import _parse_padding
+from .upfirdn2d import _get_filter_size
+
+#----------------------------------------------------------------------------
+
+def _get_weight_shape(w):
+ with misc.suppress_tracer_warnings(): # this value will be treated as a constant
+ shape = [int(sz) for sz in w.shape]
+ misc.assert_shape(w, shape)
+ return shape
+
+#----------------------------------------------------------------------------
+
+def _conv2d_wrapper(x, w, stride=1, padding=0, groups=1, transpose=False, flip_weight=True):
+ """Wrapper for the underlying `conv2d()` and `conv_transpose2d()` implementations.
+ """
+ out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w)
+
+ # Flip weight if requested.
+ if not flip_weight: # conv2d() actually performs correlation (flip_weight=True) not convolution (flip_weight=False).
+ w = w.flip([2, 3])
+
+ # Workaround performance pitfall in cuDNN 8.0.5, triggered when using
+ # 1x1 kernel + memory_format=channels_last + less than 64 channels.
+ if kw == 1 and kh == 1 and stride == 1 and padding in [0, [0, 0], (0, 0)] and not transpose:
+ if x.stride()[1] == 1 and min(out_channels, in_channels_per_group) < 64:
+ if out_channels <= 4 and groups == 1:
+ in_shape = x.shape
+ x = w.squeeze(3).squeeze(2) @ x.reshape([in_shape[0], in_channels_per_group, -1])
+ x = x.reshape([in_shape[0], out_channels, in_shape[2], in_shape[3]])
+ else:
+ x = x.to(memory_format=torch.contiguous_format)
+ w = w.to(memory_format=torch.contiguous_format)
+ x = conv2d_gradfix.conv2d(x, w, groups=groups)
+ return x.to(memory_format=torch.channels_last)
+
+ # Otherwise => execute using conv2d_gradfix.
+ op = conv2d_gradfix.conv_transpose2d if transpose else conv2d_gradfix.conv2d
+ return op(x, w, stride=stride, padding=padding, groups=groups)
+
+#----------------------------------------------------------------------------
+
+@misc.profiled_function
+def conv2d_resample(x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight=True, flip_filter=False):
+ r"""2D convolution with optional up/downsampling.
+
+ Padding is performed only once at the beginning, not between the operations.
+
+ Args:
+ x: Input tensor of shape
+ `[batch_size, in_channels, in_height, in_width]`.
+ w: Weight tensor of shape
+ `[out_channels, in_channels//groups, kernel_height, kernel_width]`.
+ f: Low-pass filter for up/downsampling. Must be prepared beforehand by
+ calling upfirdn2d.setup_filter(). None = identity (default).
+ up: Integer upsampling factor (default: 1).
+ down: Integer downsampling factor (default: 1).
+ padding: Padding with respect to the upsampled image. Can be a single number
+ or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
+ (default: 0).
+ groups: Split input channels into N groups (default: 1).
+ flip_weight: False = convolution, True = correlation (default: True).
+ flip_filter: False = convolution, True = correlation (default: False).
+
+ Returns:
+ Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
+ """
+ # Validate arguments.
+ assert isinstance(x, torch.Tensor) and (x.ndim == 4)
+ assert isinstance(w, torch.Tensor) and (w.ndim == 4) and (w.dtype == x.dtype)
+ assert f is None or (isinstance(f, torch.Tensor) and f.ndim in [1, 2] and f.dtype == torch.float32)
+ assert isinstance(up, int) and (up >= 1)
+ assert isinstance(down, int) and (down >= 1)
+ assert isinstance(groups, int) and (groups >= 1)
+ out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w)
+ fw, fh = _get_filter_size(f)
+ px0, px1, py0, py1 = _parse_padding(padding)
+
+ # Adjust padding to account for up/downsampling.
+ if up > 1:
+ px0 += (fw + up - 1) // 2
+ px1 += (fw - up) // 2
+ py0 += (fh + up - 1) // 2
+ py1 += (fh - up) // 2
+ if down > 1:
+ px0 += (fw - down + 1) // 2
+ px1 += (fw - down) // 2
+ py0 += (fh - down + 1) // 2
+ py1 += (fh - down) // 2
+
+ # Fast path: 1x1 convolution with downsampling only => downsample first, then convolve.
+ if kw == 1 and kh == 1 and (down > 1 and up == 1):
+ x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, padding=[px0,px1,py0,py1], flip_filter=flip_filter)
+ x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
+ return x
+
+ # Fast path: 1x1 convolution with upsampling only => convolve first, then upsample.
+ if kw == 1 and kh == 1 and (up > 1 and down == 1):
+ x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
+ x = upfirdn2d.upfirdn2d(x=x, f=f, up=up, padding=[px0,px1,py0,py1], gain=up**2, flip_filter=flip_filter)
+ return x
+
+ # Fast path: downsampling only => use strided convolution.
+ if down > 1 and up == 1:
+ x = upfirdn2d.upfirdn2d(x=x, f=f, padding=[px0,px1,py0,py1], flip_filter=flip_filter)
+ x = _conv2d_wrapper(x=x, w=w, stride=down, groups=groups, flip_weight=flip_weight)
+ return x
+
+ # Fast path: upsampling with optional downsampling => use transpose strided convolution.
+ if up > 1:
+ if groups == 1:
+ w = w.transpose(0, 1)
+ else:
+ w = w.reshape(groups, out_channels // groups, in_channels_per_group, kh, kw)
+ w = w.transpose(1, 2)
+ w = w.reshape(groups * in_channels_per_group, out_channels // groups, kh, kw)
+ px0 -= kw - 1
+ px1 -= kw - up
+ py0 -= kh - 1
+ py1 -= kh - up
+ pxt = max(min(-px0, -px1), 0)
+ pyt = max(min(-py0, -py1), 0)
+ x = _conv2d_wrapper(x=x, w=w, stride=up, padding=[pyt,pxt], groups=groups, transpose=True, flip_weight=(not flip_weight))
+ x = upfirdn2d.upfirdn2d(x=x, f=f, padding=[px0+pxt,px1+pxt,py0+pyt,py1+pyt], gain=up**2, flip_filter=flip_filter)
+ if down > 1:
+ x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter)
+ return x
+
+ # Fast path: no up/downsampling, padding supported by the underlying implementation => use plain conv2d.
+ if up == 1 and down == 1:
+ if px0 == px1 and py0 == py1 and px0 >= 0 and py0 >= 0:
+ return _conv2d_wrapper(x=x, w=w, padding=[py0,px0], groups=groups, flip_weight=flip_weight)
+
+ # Fallback: Generic reference implementation.
+ x = upfirdn2d.upfirdn2d(x=x, f=(f if up > 1 else None), up=up, padding=[px0,px1,py0,py1], gain=up**2, flip_filter=flip_filter)
+ x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
+ if down > 1:
+ x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter)
+ return x
+
+#----------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/ops/fma.py b/global_torch/torch_utils/ops/fma.py
new file mode 100644
index 0000000..2eeac58
--- /dev/null
+++ b/global_torch/torch_utils/ops/fma.py
@@ -0,0 +1,60 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+"""Fused multiply-add, with slightly faster gradients than `torch.addcmul()`."""
+
+import torch
+
+#----------------------------------------------------------------------------
+
+def fma(a, b, c): # => a * b + c
+ return _FusedMultiplyAdd.apply(a, b, c)
+
+#----------------------------------------------------------------------------
+
+class _FusedMultiplyAdd(torch.autograd.Function): # a * b + c
+ @staticmethod
+ def forward(ctx, a, b, c): # pylint: disable=arguments-differ
+ out = torch.addcmul(c, a, b)
+ ctx.save_for_backward(a, b)
+ ctx.c_shape = c.shape
+ return out
+
+ @staticmethod
+ def backward(ctx, dout): # pylint: disable=arguments-differ
+ a, b = ctx.saved_tensors
+ c_shape = ctx.c_shape
+ da = None
+ db = None
+ dc = None
+
+ if ctx.needs_input_grad[0]:
+ da = _unbroadcast(dout * b, a.shape)
+
+ if ctx.needs_input_grad[1]:
+ db = _unbroadcast(dout * a, b.shape)
+
+ if ctx.needs_input_grad[2]:
+ dc = _unbroadcast(dout, c_shape)
+
+ return da, db, dc
+
+#----------------------------------------------------------------------------
+
+def _unbroadcast(x, shape):
+ extra_dims = x.ndim - len(shape)
+ assert extra_dims >= 0
+ dim = [i for i in range(x.ndim) if x.shape[i] > 1 and (i < extra_dims or shape[i - extra_dims] == 1)]
+ if len(dim):
+ x = x.sum(dim=dim, keepdim=True)
+ if extra_dims:
+ x = x.reshape(-1, *x.shape[extra_dims+1:])
+ assert x.shape == shape
+ return x
+
+#----------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/ops/fused_act.py b/global_torch/torch_utils/ops/fused_act.py
new file mode 100644
index 0000000..9094954
--- /dev/null
+++ b/global_torch/torch_utils/ops/fused_act.py
@@ -0,0 +1,34 @@
+import os
+
+import torch
+from torch import nn
+from torch.nn import functional as F
+from torch.autograd import Function
+
+
+module_path = os.path.dirname(__file__)
+
+
+
+class FusedLeakyReLU(nn.Module):
+ def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
+ super().__init__()
+
+ self.bias = nn.Parameter(torch.zeros(channel))
+ self.negative_slope = negative_slope
+ self.scale = scale
+
+ def forward(self, input):
+ return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
+
+
+def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
+ rest_dim = [1] * (input.ndim - bias.ndim - 1)
+ input = input.cuda()
+ return (
+ F.leaky_relu(
+ input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=negative_slope
+ )
+ * scale
+ )
+
diff --git a/global_torch/torch_utils/ops/grid_sample_gradfix.py b/global_torch/torch_utils/ops/grid_sample_gradfix.py
new file mode 100644
index 0000000..ca6b341
--- /dev/null
+++ b/global_torch/torch_utils/ops/grid_sample_gradfix.py
@@ -0,0 +1,83 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+"""Custom replacement for `torch.nn.functional.grid_sample` that
+supports arbitrarily high order gradients between the input and output.
+Only works on 2D images and assumes
+`mode='bilinear'`, `padding_mode='zeros'`, `align_corners=False`."""
+
+import warnings
+import torch
+
+# pylint: disable=redefined-builtin
+# pylint: disable=arguments-differ
+# pylint: disable=protected-access
+
+#----------------------------------------------------------------------------
+
+enabled = False # Enable the custom op by setting this to true.
+
+#----------------------------------------------------------------------------
+
+def grid_sample(input, grid):
+ if _should_use_custom_op():
+ return _GridSample2dForward.apply(input, grid)
+ return torch.nn.functional.grid_sample(input=input, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=False)
+
+#----------------------------------------------------------------------------
+
+def _should_use_custom_op():
+ if not enabled:
+ return False
+ if any(torch.__version__.startswith(x) for x in ['1.7.', '1.8.', '1.9']):
+ return True
+ warnings.warn(f'grid_sample_gradfix not supported on PyTorch {torch.__version__}. Falling back to torch.nn.functional.grid_sample().')
+ return False
+
+#----------------------------------------------------------------------------
+
+class _GridSample2dForward(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, input, grid):
+ assert input.ndim == 4
+ assert grid.ndim == 4
+ output = torch.nn.functional.grid_sample(input=input, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=False)
+ ctx.save_for_backward(input, grid)
+ return output
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ input, grid = ctx.saved_tensors
+ grad_input, grad_grid = _GridSample2dBackward.apply(grad_output, input, grid)
+ return grad_input, grad_grid
+
+#----------------------------------------------------------------------------
+
+class _GridSample2dBackward(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, grad_output, input, grid):
+ op = torch._C._jit_get_operation('aten::grid_sampler_2d_backward')
+ grad_input, grad_grid = op(grad_output, input, grid, 0, 0, False)
+ ctx.save_for_backward(grid)
+ return grad_input, grad_grid
+
+ @staticmethod
+ def backward(ctx, grad2_grad_input, grad2_grad_grid):
+ _ = grad2_grad_grid # unused
+ grid, = ctx.saved_tensors
+ grad2_grad_output = None
+ grad2_input = None
+ grad2_grid = None
+
+ if ctx.needs_input_grad[0]:
+ grad2_grad_output = _GridSample2dForward.apply(grad2_grad_input, grid)
+
+ assert not ctx.needs_input_grad[2]
+ return grad2_grad_output, grad2_input, grad2_grid
+
+#----------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/ops/upfirdn2d.cpp b/global_torch/torch_utils/ops/upfirdn2d.cpp
new file mode 100644
index 0000000..2d7177f
--- /dev/null
+++ b/global_torch/torch_utils/ops/upfirdn2d.cpp
@@ -0,0 +1,103 @@
+// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include
+#include
+#include
+#include "upfirdn2d.h"
+
+//------------------------------------------------------------------------
+
+static torch::Tensor upfirdn2d(torch::Tensor x, torch::Tensor f, int upx, int upy, int downx, int downy, int padx0, int padx1, int pady0, int pady1, bool flip, float gain)
+{
+ // Validate arguments.
+ TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
+ TORCH_CHECK(f.device() == x.device(), "f must reside on the same device as x");
+ TORCH_CHECK(f.dtype() == torch::kFloat, "f must be float32");
+ TORCH_CHECK(x.numel() <= INT_MAX, "x is too large");
+ TORCH_CHECK(f.numel() <= INT_MAX, "f is too large");
+ TORCH_CHECK(x.dim() == 4, "x must be rank 4");
+ TORCH_CHECK(f.dim() == 2, "f must be rank 2");
+ TORCH_CHECK(f.size(0) >= 1 && f.size(1) >= 1, "f must be at least 1x1");
+ TORCH_CHECK(upx >= 1 && upy >= 1, "upsampling factor must be at least 1");
+ TORCH_CHECK(downx >= 1 && downy >= 1, "downsampling factor must be at least 1");
+
+ // Create output tensor.
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
+ int outW = ((int)x.size(3) * upx + padx0 + padx1 - (int)f.size(1) + downx) / downx;
+ int outH = ((int)x.size(2) * upy + pady0 + pady1 - (int)f.size(0) + downy) / downy;
+ TORCH_CHECK(outW >= 1 && outH >= 1, "output must be at least 1x1");
+ torch::Tensor y = torch::empty({x.size(0), x.size(1), outH, outW}, x.options(), x.suggest_memory_format());
+ TORCH_CHECK(y.numel() <= INT_MAX, "output is too large");
+
+ // Initialize CUDA kernel parameters.
+ upfirdn2d_kernel_params p;
+ p.x = x.data_ptr();
+ p.f = f.data_ptr();
+ p.y = y.data_ptr();
+ p.up = make_int2(upx, upy);
+ p.down = make_int2(downx, downy);
+ p.pad0 = make_int2(padx0, pady0);
+ p.flip = (flip) ? 1 : 0;
+ p.gain = gain;
+ p.inSize = make_int4((int)x.size(3), (int)x.size(2), (int)x.size(1), (int)x.size(0));
+ p.inStride = make_int4((int)x.stride(3), (int)x.stride(2), (int)x.stride(1), (int)x.stride(0));
+ p.filterSize = make_int2((int)f.size(1), (int)f.size(0));
+ p.filterStride = make_int2((int)f.stride(1), (int)f.stride(0));
+ p.outSize = make_int4((int)y.size(3), (int)y.size(2), (int)y.size(1), (int)y.size(0));
+ p.outStride = make_int4((int)y.stride(3), (int)y.stride(2), (int)y.stride(1), (int)y.stride(0));
+ p.sizeMajor = (p.inStride.z == 1) ? p.inSize.w : p.inSize.w * p.inSize.z;
+ p.sizeMinor = (p.inStride.z == 1) ? p.inSize.z : 1;
+
+ // Choose CUDA kernel.
+ upfirdn2d_kernel_spec spec;
+ AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&]
+ {
+ spec = choose_upfirdn2d_kernel(p);
+ });
+
+ // Set looping options.
+ p.loopMajor = (p.sizeMajor - 1) / 16384 + 1;
+ p.loopMinor = spec.loopMinor;
+ p.loopX = spec.loopX;
+ p.launchMinor = (p.sizeMinor - 1) / p.loopMinor + 1;
+ p.launchMajor = (p.sizeMajor - 1) / p.loopMajor + 1;
+
+ // Compute grid size.
+ dim3 blockSize, gridSize;
+ if (spec.tileOutW < 0) // large
+ {
+ blockSize = dim3(4, 32, 1);
+ gridSize = dim3(
+ ((p.outSize.y - 1) / blockSize.x + 1) * p.launchMinor,
+ (p.outSize.x - 1) / (blockSize.y * p.loopX) + 1,
+ p.launchMajor);
+ }
+ else // small
+ {
+ blockSize = dim3(256, 1, 1);
+ gridSize = dim3(
+ ((p.outSize.y - 1) / spec.tileOutH + 1) * p.launchMinor,
+ (p.outSize.x - 1) / (spec.tileOutW * p.loopX) + 1,
+ p.launchMajor);
+ }
+
+ // Launch CUDA kernel.
+ void* args[] = {&p};
+ AT_CUDA_CHECK(cudaLaunchKernel(spec.kernel, gridSize, blockSize, args, 0, at::cuda::getCurrentCUDAStream()));
+ return y;
+}
+
+//------------------------------------------------------------------------
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
+{
+ m.def("upfirdn2d", &upfirdn2d);
+}
+
+//------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/ops/upfirdn2d.cu b/global_torch/torch_utils/ops/upfirdn2d.cu
new file mode 100644
index 0000000..ebdd987
--- /dev/null
+++ b/global_torch/torch_utils/ops/upfirdn2d.cu
@@ -0,0 +1,350 @@
+// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include
+#include "upfirdn2d.h"
+
+//------------------------------------------------------------------------
+// Helpers.
+
+template struct InternalType;
+template <> struct InternalType { typedef double scalar_t; };
+template <> struct InternalType { typedef float scalar_t; };
+template <> struct InternalType { typedef float scalar_t; };
+
+static __device__ __forceinline__ int floor_div(int a, int b)
+{
+ int t = 1 - a / b;
+ return (a + t * b) / b - t;
+}
+
+//------------------------------------------------------------------------
+// Generic CUDA implementation for large filters.
+
+template static __global__ void upfirdn2d_kernel_large(upfirdn2d_kernel_params p)
+{
+ typedef typename InternalType::scalar_t scalar_t;
+
+ // Calculate thread index.
+ int minorBase = blockIdx.x * blockDim.x + threadIdx.x;
+ int outY = minorBase / p.launchMinor;
+ minorBase -= outY * p.launchMinor;
+ int outXBase = blockIdx.y * p.loopX * blockDim.y + threadIdx.y;
+ int majorBase = blockIdx.z * p.loopMajor;
+ if (outXBase >= p.outSize.x | outY >= p.outSize.y | majorBase >= p.sizeMajor)
+ return;
+
+ // Setup Y receptive field.
+ int midY = outY * p.down.y + p.up.y - 1 - p.pad0.y;
+ int inY = min(max(floor_div(midY, p.up.y), 0), p.inSize.y);
+ int h = min(max(floor_div(midY + p.filterSize.y, p.up.y), 0), p.inSize.y) - inY;
+ int filterY = midY + p.filterSize.y - (inY + 1) * p.up.y;
+ if (p.flip)
+ filterY = p.filterSize.y - 1 - filterY;
+
+ // Loop over major, minor, and X.
+ for (int majorIdx = 0, major = majorBase; majorIdx < p.loopMajor & major < p.sizeMajor; majorIdx++, major++)
+ for (int minorIdx = 0, minor = minorBase; minorIdx < p.loopMinor & minor < p.sizeMinor; minorIdx++, minor += p.launchMinor)
+ {
+ int nc = major * p.sizeMinor + minor;
+ int n = nc / p.inSize.z;
+ int c = nc - n * p.inSize.z;
+ for (int loopX = 0, outX = outXBase; loopX < p.loopX & outX < p.outSize.x; loopX++, outX += blockDim.y)
+ {
+ // Setup X receptive field.
+ int midX = outX * p.down.x + p.up.x - 1 - p.pad0.x;
+ int inX = min(max(floor_div(midX, p.up.x), 0), p.inSize.x);
+ int w = min(max(floor_div(midX + p.filterSize.x, p.up.x), 0), p.inSize.x) - inX;
+ int filterX = midX + p.filterSize.x - (inX + 1) * p.up.x;
+ if (p.flip)
+ filterX = p.filterSize.x - 1 - filterX;
+
+ // Initialize pointers.
+ const T* xp = &((const T*)p.x)[inX * p.inStride.x + inY * p.inStride.y + c * p.inStride.z + n * p.inStride.w];
+ const float* fp = &p.f[filterX * p.filterStride.x + filterY * p.filterStride.y];
+ int filterStepX = ((p.flip) ? p.up.x : -p.up.x) * p.filterStride.x;
+ int filterStepY = ((p.flip) ? p.up.y : -p.up.y) * p.filterStride.y;
+
+ // Inner loop.
+ scalar_t v = 0;
+ for (int y = 0; y < h; y++)
+ {
+ for (int x = 0; x < w; x++)
+ {
+ v += (scalar_t)(*xp) * (scalar_t)(*fp);
+ xp += p.inStride.x;
+ fp += filterStepX;
+ }
+ xp += p.inStride.y - w * p.inStride.x;
+ fp += filterStepY - w * filterStepX;
+ }
+
+ // Store result.
+ v *= p.gain;
+ ((T*)p.y)[outX * p.outStride.x + outY * p.outStride.y + c * p.outStride.z + n * p.outStride.w] = (T)v;
+ }
+ }
+}
+
+//------------------------------------------------------------------------
+// Specialized CUDA implementation for small filters.
+
+template
+static __global__ void upfirdn2d_kernel_small(upfirdn2d_kernel_params p)
+{
+ typedef typename InternalType::scalar_t scalar_t;
+ const int tileInW = ((tileOutW - 1) * downx + filterW - 1) / upx + 1;
+ const int tileInH = ((tileOutH - 1) * downy + filterH - 1) / upy + 1;
+ __shared__ volatile scalar_t sf[filterH][filterW];
+ __shared__ volatile scalar_t sx[tileInH][tileInW][loopMinor];
+
+ // Calculate tile index.
+ int minorBase = blockIdx.x;
+ int tileOutY = minorBase / p.launchMinor;
+ minorBase -= tileOutY * p.launchMinor;
+ minorBase *= loopMinor;
+ tileOutY *= tileOutH;
+ int tileOutXBase = blockIdx.y * p.loopX * tileOutW;
+ int majorBase = blockIdx.z * p.loopMajor;
+ if (tileOutXBase >= p.outSize.x | tileOutY >= p.outSize.y | majorBase >= p.sizeMajor)
+ return;
+
+ // Load filter (flipped).
+ for (int tapIdx = threadIdx.x; tapIdx < filterH * filterW; tapIdx += blockDim.x)
+ {
+ int fy = tapIdx / filterW;
+ int fx = tapIdx - fy * filterW;
+ scalar_t v = 0;
+ if (fx < p.filterSize.x & fy < p.filterSize.y)
+ {
+ int ffx = (p.flip) ? fx : p.filterSize.x - 1 - fx;
+ int ffy = (p.flip) ? fy : p.filterSize.y - 1 - fy;
+ v = (scalar_t)p.f[ffx * p.filterStride.x + ffy * p.filterStride.y];
+ }
+ sf[fy][fx] = v;
+ }
+
+ // Loop over major and X.
+ for (int majorIdx = 0, major = majorBase; majorIdx < p.loopMajor & major < p.sizeMajor; majorIdx++, major++)
+ {
+ int baseNC = major * p.sizeMinor + minorBase;
+ int n = baseNC / p.inSize.z;
+ int baseC = baseNC - n * p.inSize.z;
+ for (int loopX = 0, tileOutX = tileOutXBase; loopX < p.loopX & tileOutX < p.outSize.x; loopX++, tileOutX += tileOutW)
+ {
+ // Load input pixels.
+ int tileMidX = tileOutX * downx + upx - 1 - p.pad0.x;
+ int tileMidY = tileOutY * downy + upy - 1 - p.pad0.y;
+ int tileInX = floor_div(tileMidX, upx);
+ int tileInY = floor_div(tileMidY, upy);
+ __syncthreads();
+ for (int inIdx = threadIdx.x; inIdx < tileInH * tileInW * loopMinor; inIdx += blockDim.x)
+ {
+ int relC = inIdx;
+ int relInX = relC / loopMinor;
+ int relInY = relInX / tileInW;
+ relC -= relInX * loopMinor;
+ relInX -= relInY * tileInW;
+ int c = baseC + relC;
+ int inX = tileInX + relInX;
+ int inY = tileInY + relInY;
+ scalar_t v = 0;
+ if (inX >= 0 & inY >= 0 & inX < p.inSize.x & inY < p.inSize.y & c < p.inSize.z)
+ v = (scalar_t)((const T*)p.x)[inX * p.inStride.x + inY * p.inStride.y + c * p.inStride.z + n * p.inStride.w];
+ sx[relInY][relInX][relC] = v;
+ }
+
+ // Loop over output pixels.
+ __syncthreads();
+ for (int outIdx = threadIdx.x; outIdx < tileOutH * tileOutW * loopMinor; outIdx += blockDim.x)
+ {
+ int relC = outIdx;
+ int relOutX = relC / loopMinor;
+ int relOutY = relOutX / tileOutW;
+ relC -= relOutX * loopMinor;
+ relOutX -= relOutY * tileOutW;
+ int c = baseC + relC;
+ int outX = tileOutX + relOutX;
+ int outY = tileOutY + relOutY;
+
+ // Setup receptive field.
+ int midX = tileMidX + relOutX * downx;
+ int midY = tileMidY + relOutY * downy;
+ int inX = floor_div(midX, upx);
+ int inY = floor_div(midY, upy);
+ int relInX = inX - tileInX;
+ int relInY = inY - tileInY;
+ int filterX = (inX + 1) * upx - midX - 1; // flipped
+ int filterY = (inY + 1) * upy - midY - 1; // flipped
+
+ // Inner loop.
+ if (outX < p.outSize.x & outY < p.outSize.y & c < p.outSize.z)
+ {
+ scalar_t v = 0;
+ #pragma unroll
+ for (int y = 0; y < filterH / upy; y++)
+ #pragma unroll
+ for (int x = 0; x < filterW / upx; x++)
+ v += sx[relInY + y][relInX + x][relC] * sf[filterY + y * upy][filterX + x * upx];
+ v *= p.gain;
+ ((T*)p.y)[outX * p.outStride.x + outY * p.outStride.y + c * p.outStride.z + n * p.outStride.w] = (T)v;
+ }
+ }
+ }
+ }
+}
+
+//------------------------------------------------------------------------
+// CUDA kernel selection.
+
+template upfirdn2d_kernel_spec choose_upfirdn2d_kernel(const upfirdn2d_kernel_params& p)
+{
+ int s = p.inStride.z, fx = p.filterSize.x, fy = p.filterSize.y;
+
+ upfirdn2d_kernel_spec spec = {(void*)upfirdn2d_kernel_large, -1,-1,1, 4}; // contiguous
+ if (s == 1) spec = {(void*)upfirdn2d_kernel_large, -1,-1,4, 1}; // channels_last
+
+ if (s != 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 1 && p.down.y == 1) // contiguous
+ {
+ if (fx <= 7 && fy <= 7 ) spec = {(void*)upfirdn2d_kernel_small, 64,16,1, 1};
+ if (fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small, 64,16,1, 1};
+ if (fx <= 5 && fy <= 5 ) spec = {(void*)upfirdn2d_kernel_small, 64,16,1, 1};
+ if (fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small, 64,16,1, 1};
+ if (fx <= 3 && fy <= 3 ) spec = {(void*)upfirdn2d_kernel_small, 64,16,1, 1};
+ if (fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,8,1, 1};
+ if (fx <= 20 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,8,1, 1};
+ if (fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,8,1, 1};
+ if (fx <= 12 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,8,1, 1};
+ if (fx <= 8 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,8,1, 1};
+ if (fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small, 32,32,1, 1};
+ if (fx <= 1 && fy <= 20) spec = {(void*)upfirdn2d_kernel_small, 32,32,1, 1};
+ if (fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small, 32,32,1, 1};
+ if (fx <= 1 && fy <= 12) spec = {(void*)upfirdn2d_kernel_small, 32,32,1, 1};
+ if (fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small, 32,32,1, 1};
+ }
+ if (s == 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 1 && p.down.y == 1) // channels_last
+ {
+ if (fx <= 7 && fy <= 7 ) spec = {(void*)upfirdn2d_kernel_small, 16,16,8, 1};
+ if (fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small, 16,16,8, 1};
+ if (fx <= 5 && fy <= 5 ) spec = {(void*)upfirdn2d_kernel_small, 16,16,8, 1};
+ if (fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small, 16,16,8, 1};
+ if (fx <= 3 && fy <= 3 ) spec = {(void*)upfirdn2d_kernel_small, 16,16,8, 1};
+ if (fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,1,16, 1};
+ if (fx <= 20 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,1,16, 1};
+ if (fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,1,16, 1};
+ if (fx <= 12 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,1,16, 1};
+ if (fx <= 8 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,1,16, 1};
+ if (fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small, 1,128,16, 1};
+ if (fx <= 1 && fy <= 20) spec = {(void*)upfirdn2d_kernel_small, 1,128,16, 1};
+ if (fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small, 1,128,16, 1};
+ if (fx <= 1 && fy <= 12) spec = {(void*)upfirdn2d_kernel_small, 1,128,16, 1};
+ if (fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small, 1,128,16, 1};
+ }
+ if (s != 1 && p.up.x == 2 && p.up.y == 2 && p.down.x == 1 && p.down.y == 1) // contiguous
+ {
+ if (fx <= 8 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small, 64,16,1, 1};
+ if (fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small, 64,16,1, 1};
+ if (fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small, 64,16,1, 1};
+ if (fx <= 2 && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small, 64,16,1, 1};
+ }
+ if (s == 1 && p.up.x == 2 && p.up.y == 2 && p.down.x == 1 && p.down.y == 1) // channels_last
+ {
+ if (fx <= 8 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small, 16,16,8, 1};
+ if (fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small, 16,16,8, 1};
+ if (fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small, 16,16,8, 1};
+ if (fx <= 2 && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small, 16,16,8, 1};
+ }
+ if (s != 1 && p.up.x == 2 && p.up.y == 1 && p.down.x == 1 && p.down.y == 1) // contiguous
+ {
+ if (fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,8,1, 1};
+ if (fx <= 20 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,8,1, 1};
+ if (fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,8,1, 1};
+ if (fx <= 12 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,8,1, 1};
+ if (fx <= 8 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,8,1, 1};
+ }
+ if (s == 1 && p.up.x == 2 && p.up.y == 1 && p.down.x == 1 && p.down.y == 1) // channels_last
+ {
+ if (fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,1,16, 1};
+ if (fx <= 20 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,1,16, 1};
+ if (fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,1,16, 1};
+ if (fx <= 12 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,1,16, 1};
+ if (fx <= 8 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 128,1,16, 1};
+ }
+ if (s != 1 && p.up.x == 1 && p.up.y == 2 && p.down.x == 1 && p.down.y == 1) // contiguous
+ {
+ if (fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small, 32,32,1, 1};
+ if (fx <= 1 && fy <= 20) spec = {(void*)upfirdn2d_kernel_small, 32,32,1, 1};
+ if (fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small, 32,32,1, 1};
+ if (fx <= 1 && fy <= 12) spec = {(void*)upfirdn2d_kernel_small, 32,32,1, 1};
+ if (fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small, 32,32,1, 1};
+ }
+ if (s == 1 && p.up.x == 1 && p.up.y == 2 && p.down.x == 1 && p.down.y == 1) // channels_last
+ {
+ if (fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small, 1,128,16, 1};
+ if (fx <= 1 && fy <= 20) spec = {(void*)upfirdn2d_kernel_small, 1,128,16, 1};
+ if (fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small, 1,128,16, 1};
+ if (fx <= 1 && fy <= 12) spec = {(void*)upfirdn2d_kernel_small, 1,128,16, 1};
+ if (fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small, 1,128,16, 1};
+ }
+ if (s != 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 2 && p.down.y == 2) // contiguous
+ {
+ if (fx <= 8 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small, 32,8,1, 1};
+ if (fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small, 32,8,1, 1};
+ if (fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small, 32,8,1, 1};
+ if (fx <= 2 && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small, 32,8,1, 1};
+ }
+ if (s == 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 2 && p.down.y == 2) // channels_last
+ {
+ if (fx <= 8 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small, 8,8,8, 1};
+ if (fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small, 8,8,8, 1};
+ if (fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small, 8,8,8, 1};
+ if (fx <= 2 && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small, 8,8,8, 1};
+ }
+ if (s != 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 2 && p.down.y == 1) // contiguous
+ {
+ if (fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 64,8,1, 1};
+ if (fx <= 20 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 64,8,1, 1};
+ if (fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 64,8,1, 1};
+ if (fx <= 12 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 64,8,1, 1};
+ if (fx <= 8 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 64,8,1, 1};
+ }
+ if (s == 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 2 && p.down.y == 1) // channels_last
+ {
+ if (fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 64,1,8, 1};
+ if (fx <= 20 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 64,1,8, 1};
+ if (fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 64,1,8, 1};
+ if (fx <= 12 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 64,1,8, 1};
+ if (fx <= 8 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small, 64,1,8, 1};
+ }
+ if (s != 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 1 && p.down.y == 2) // contiguous
+ {
+ if (fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small, 32,16,1, 1};
+ if (fx <= 1 && fy <= 20) spec = {(void*)upfirdn2d_kernel_small, 32,16,1, 1};
+ if (fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small, 32,16,1, 1};
+ if (fx <= 1 && fy <= 12) spec = {(void*)upfirdn2d_kernel_small, 32,16,1, 1};
+ if (fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small, 32,16,1, 1};
+ }
+ if (s == 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 1 && p.down.y == 2) // channels_last
+ {
+ if (fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small, 1,64,8, 1};
+ if (fx <= 1 && fy <= 20) spec = {(void*)upfirdn2d_kernel_small, 1,64,8, 1};
+ if (fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small, 1,64,8, 1};
+ if (fx <= 1 && fy <= 12) spec = {(void*)upfirdn2d_kernel_small, 1,64,8, 1};
+ if (fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small, 1,64,8, 1};
+ }
+ return spec;
+}
+
+//------------------------------------------------------------------------
+// Template specializations.
+
+template upfirdn2d_kernel_spec choose_upfirdn2d_kernel (const upfirdn2d_kernel_params& p);
+template upfirdn2d_kernel_spec choose_upfirdn2d_kernel (const upfirdn2d_kernel_params& p);
+template upfirdn2d_kernel_spec choose_upfirdn2d_kernel(const upfirdn2d_kernel_params& p);
+
+//------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/ops/upfirdn2d.h b/global_torch/torch_utils/ops/upfirdn2d.h
new file mode 100644
index 0000000..c9e2032
--- /dev/null
+++ b/global_torch/torch_utils/ops/upfirdn2d.h
@@ -0,0 +1,59 @@
+// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include
+
+//------------------------------------------------------------------------
+// CUDA kernel parameters.
+
+struct upfirdn2d_kernel_params
+{
+ const void* x;
+ const float* f;
+ void* y;
+
+ int2 up;
+ int2 down;
+ int2 pad0;
+ int flip;
+ float gain;
+
+ int4 inSize; // [width, height, channel, batch]
+ int4 inStride;
+ int2 filterSize; // [width, height]
+ int2 filterStride;
+ int4 outSize; // [width, height, channel, batch]
+ int4 outStride;
+ int sizeMinor;
+ int sizeMajor;
+
+ int loopMinor;
+ int loopMajor;
+ int loopX;
+ int launchMinor;
+ int launchMajor;
+};
+
+//------------------------------------------------------------------------
+// CUDA kernel specialization.
+
+struct upfirdn2d_kernel_spec
+{
+ void* kernel;
+ int tileOutW;
+ int tileOutH;
+ int loopMinor;
+ int loopX;
+};
+
+//------------------------------------------------------------------------
+// CUDA kernel selection.
+
+template upfirdn2d_kernel_spec choose_upfirdn2d_kernel(const upfirdn2d_kernel_params& p);
+
+//------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/ops/upfirdn2d.py b/global_torch/torch_utils/ops/upfirdn2d.py
new file mode 100644
index 0000000..ceeac2b
--- /dev/null
+++ b/global_torch/torch_utils/ops/upfirdn2d.py
@@ -0,0 +1,384 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+"""Custom PyTorch ops for efficient resampling of 2D images."""
+
+import os
+import warnings
+import numpy as np
+import torch
+import traceback
+
+from .. import custom_ops
+from .. import misc
+from . import conv2d_gradfix
+
+#----------------------------------------------------------------------------
+
+_inited = False
+_plugin = None
+
+def _init():
+ global _inited, _plugin
+ if not _inited:
+ sources = ['upfirdn2d.cpp', 'upfirdn2d.cu']
+ sources = [os.path.join(os.path.dirname(__file__), s) for s in sources]
+ try:
+ _plugin = custom_ops.get_plugin('upfirdn2d_plugin', sources=sources, extra_cuda_cflags=['--use_fast_math'])
+ except:
+ warnings.warn('Failed to build CUDA kernels for upfirdn2d. Falling back to slow reference implementation. Details:\n\n' + traceback.format_exc())
+ return _plugin is not None
+
+def _parse_scaling(scaling):
+ if isinstance(scaling, int):
+ scaling = [scaling, scaling]
+ assert isinstance(scaling, (list, tuple))
+ assert all(isinstance(x, int) for x in scaling)
+ sx, sy = scaling
+ assert sx >= 1 and sy >= 1
+ return sx, sy
+
+def _parse_padding(padding):
+ if isinstance(padding, int):
+ padding = [padding, padding]
+ assert isinstance(padding, (list, tuple))
+ assert all(isinstance(x, int) for x in padding)
+ if len(padding) == 2:
+ padx, pady = padding
+ padding = [padx, padx, pady, pady]
+ padx0, padx1, pady0, pady1 = padding
+ return padx0, padx1, pady0, pady1
+
+def _get_filter_size(f):
+ if f is None:
+ return 1, 1
+ assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
+ fw = f.shape[-1]
+ fh = f.shape[0]
+ with misc.suppress_tracer_warnings():
+ fw = int(fw)
+ fh = int(fh)
+ misc.assert_shape(f, [fh, fw][:f.ndim])
+ assert fw >= 1 and fh >= 1
+ return fw, fh
+
+#----------------------------------------------------------------------------
+
+def setup_filter(f, device=torch.device('cpu'), normalize=True, flip_filter=False, gain=1, separable=None):
+ r"""Convenience function to setup 2D FIR filter for `upfirdn2d()`.
+
+ Args:
+ f: Torch tensor, numpy array, or python list of the shape
+ `[filter_height, filter_width]` (non-separable),
+ `[filter_taps]` (separable),
+ `[]` (impulse), or
+ `None` (identity).
+ device: Result device (default: cpu).
+ normalize: Normalize the filter so that it retains the magnitude
+ for constant input signal (DC)? (default: True).
+ flip_filter: Flip the filter? (default: False).
+ gain: Overall scaling factor for signal magnitude (default: 1).
+ separable: Return a separable filter? (default: select automatically).
+
+ Returns:
+ Float32 tensor of the shape
+ `[filter_height, filter_width]` (non-separable) or
+ `[filter_taps]` (separable).
+ """
+ # Validate.
+ if f is None:
+ f = 1
+ f = torch.as_tensor(f, dtype=torch.float32)
+ assert f.ndim in [0, 1, 2]
+ assert f.numel() > 0
+ if f.ndim == 0:
+ f = f[np.newaxis]
+
+ # Separable?
+ if separable is None:
+ separable = (f.ndim == 1 and f.numel() >= 8)
+ if f.ndim == 1 and not separable:
+ f = f.ger(f)
+ assert f.ndim == (1 if separable else 2)
+
+ # Apply normalize, flip, gain, and device.
+ if normalize:
+ f /= f.sum()
+ if flip_filter:
+ f = f.flip(list(range(f.ndim)))
+ f = f * (gain ** (f.ndim / 2))
+ f = f.to(device=device)
+ return f
+
+#----------------------------------------------------------------------------
+
+def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl='cuda'):
+ r"""Pad, upsample, filter, and downsample a batch of 2D images.
+
+ Performs the following sequence of operations for each channel:
+
+ 1. Upsample the image by inserting N-1 zeros after each pixel (`up`).
+
+ 2. Pad the image with the specified number of zeros on each side (`padding`).
+ Negative padding corresponds to cropping the image.
+
+ 3. Convolve the image with the specified 2D FIR filter (`f`), shrinking it
+ so that the footprint of all output pixels lies within the input image.
+
+ 4. Downsample the image by keeping every Nth pixel (`down`).
+
+ This sequence of operations bears close resemblance to scipy.signal.upfirdn().
+ The fused op is considerably more efficient than performing the same calculation
+ using standard PyTorch ops. It supports gradients of arbitrary order.
+
+ Args:
+ x: Float32/float64/float16 input tensor of the shape
+ `[batch_size, num_channels, in_height, in_width]`.
+ f: Float32 FIR filter of the shape
+ `[filter_height, filter_width]` (non-separable),
+ `[filter_taps]` (separable), or
+ `None` (identity).
+ up: Integer upsampling factor. Can be a single int or a list/tuple
+ `[x, y]` (default: 1).
+ down: Integer downsampling factor. Can be a single int or a list/tuple
+ `[x, y]` (default: 1).
+ padding: Padding with respect to the upsampled image. Can be a single number
+ or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
+ (default: 0).
+ flip_filter: False = convolution, True = correlation (default: False).
+ gain: Overall scaling factor for signal magnitude (default: 1).
+ impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
+
+ Returns:
+ Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
+ """
+ assert isinstance(x, torch.Tensor)
+ assert impl in ['ref', 'cuda']
+ if impl == 'cuda' and x.device.type == 'cuda' and _init():
+ return _upfirdn2d_cuda(up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain).apply(x, f)
+ return _upfirdn2d_ref(x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain)
+
+#----------------------------------------------------------------------------
+
+@misc.profiled_function
+def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
+ """Slow reference implementation of `upfirdn2d()` using standard PyTorch ops.
+ """
+ # Validate arguments.
+ assert isinstance(x, torch.Tensor) and x.ndim == 4
+ if f is None:
+ f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
+ assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
+ assert f.dtype == torch.float32 and not f.requires_grad
+ batch_size, num_channels, in_height, in_width = x.shape
+ upx, upy = _parse_scaling(up)
+ downx, downy = _parse_scaling(down)
+ padx0, padx1, pady0, pady1 = _parse_padding(padding)
+
+ # Upsample by inserting zeros.
+ x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1])
+ x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1])
+ x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx])
+
+ # Pad or crop.
+ x = torch.nn.functional.pad(x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)])
+ x = x[:, :, max(-pady0, 0) : x.shape[2] - max(-pady1, 0), max(-padx0, 0) : x.shape[3] - max(-padx1, 0)]
+
+ # Setup filter.
+ f = f * (gain ** (f.ndim / 2))
+ f = f.to(x.dtype)
+ if not flip_filter:
+ f = f.flip(list(range(f.ndim)))
+
+ # Convolve with the filter.
+ f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim)
+ if f.ndim == 4:
+ x = conv2d_gradfix.conv2d(input=x, weight=f, groups=num_channels)
+ else:
+ x = conv2d_gradfix.conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels)
+ x = conv2d_gradfix.conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels)
+
+ # Downsample by throwing away pixels.
+ x = x[:, :, ::downy, ::downx]
+ return x
+
+#----------------------------------------------------------------------------
+
+_upfirdn2d_cuda_cache = dict()
+
+def _upfirdn2d_cuda(up=1, down=1, padding=0, flip_filter=False, gain=1):
+ """Fast CUDA implementation of `upfirdn2d()` using custom ops.
+ """
+ # Parse arguments.
+ upx, upy = _parse_scaling(up)
+ downx, downy = _parse_scaling(down)
+ padx0, padx1, pady0, pady1 = _parse_padding(padding)
+
+ # Lookup from cache.
+ key = (upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, gain)
+ if key in _upfirdn2d_cuda_cache:
+ return _upfirdn2d_cuda_cache[key]
+
+ # Forward op.
+ class Upfirdn2dCuda(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, x, f): # pylint: disable=arguments-differ
+ assert isinstance(x, torch.Tensor) and x.ndim == 4
+ if f is None:
+ f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
+ assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
+ y = x
+ if f.ndim == 2:
+ y = _plugin.upfirdn2d(y, f, upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, gain)
+ else:
+ y = _plugin.upfirdn2d(y, f.unsqueeze(0), upx, 1, downx, 1, padx0, padx1, 0, 0, flip_filter, np.sqrt(gain))
+ y = _plugin.upfirdn2d(y, f.unsqueeze(1), 1, upy, 1, downy, 0, 0, pady0, pady1, flip_filter, np.sqrt(gain))
+ ctx.save_for_backward(f)
+ ctx.x_shape = x.shape
+ return y
+
+ @staticmethod
+ def backward(ctx, dy): # pylint: disable=arguments-differ
+ f, = ctx.saved_tensors
+ _, _, ih, iw = ctx.x_shape
+ _, _, oh, ow = dy.shape
+ fw, fh = _get_filter_size(f)
+ p = [
+ fw - padx0 - 1,
+ iw * upx - ow * downx + padx0 - upx + 1,
+ fh - pady0 - 1,
+ ih * upy - oh * downy + pady0 - upy + 1,
+ ]
+ dx = None
+ df = None
+
+ if ctx.needs_input_grad[0]:
+ dx = _upfirdn2d_cuda(up=down, down=up, padding=p, flip_filter=(not flip_filter), gain=gain).apply(dy, f)
+
+ assert not ctx.needs_input_grad[1]
+ return dx, df
+
+ # Add to cache.
+ _upfirdn2d_cuda_cache[key] = Upfirdn2dCuda
+ return Upfirdn2dCuda
+
+#----------------------------------------------------------------------------
+
+def filter2d(x, f, padding=0, flip_filter=False, gain=1, impl='cuda'):
+ r"""Filter a batch of 2D images using the given 2D FIR filter.
+
+ By default, the result is padded so that its shape matches the input.
+ User-specified padding is applied on top of that, with negative values
+ indicating cropping. Pixels outside the image are assumed to be zero.
+
+ Args:
+ x: Float32/float64/float16 input tensor of the shape
+ `[batch_size, num_channels, in_height, in_width]`.
+ f: Float32 FIR filter of the shape
+ `[filter_height, filter_width]` (non-separable),
+ `[filter_taps]` (separable), or
+ `None` (identity).
+ padding: Padding with respect to the output. Can be a single number or a
+ list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
+ (default: 0).
+ flip_filter: False = convolution, True = correlation (default: False).
+ gain: Overall scaling factor for signal magnitude (default: 1).
+ impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
+
+ Returns:
+ Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
+ """
+ padx0, padx1, pady0, pady1 = _parse_padding(padding)
+ fw, fh = _get_filter_size(f)
+ p = [
+ padx0 + fw // 2,
+ padx1 + (fw - 1) // 2,
+ pady0 + fh // 2,
+ pady1 + (fh - 1) // 2,
+ ]
+ return upfirdn2d(x, f, padding=p, flip_filter=flip_filter, gain=gain, impl=impl)
+
+#----------------------------------------------------------------------------
+
+def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1, impl='cuda'):
+ r"""Upsample a batch of 2D images using the given 2D FIR filter.
+
+ By default, the result is padded so that its shape is a multiple of the input.
+ User-specified padding is applied on top of that, with negative values
+ indicating cropping. Pixels outside the image are assumed to be zero.
+
+ Args:
+ x: Float32/float64/float16 input tensor of the shape
+ `[batch_size, num_channels, in_height, in_width]`.
+ f: Float32 FIR filter of the shape
+ `[filter_height, filter_width]` (non-separable),
+ `[filter_taps]` (separable), or
+ `None` (identity).
+ up: Integer upsampling factor. Can be a single int or a list/tuple
+ `[x, y]` (default: 1).
+ padding: Padding with respect to the output. Can be a single number or a
+ list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
+ (default: 0).
+ flip_filter: False = convolution, True = correlation (default: False).
+ gain: Overall scaling factor for signal magnitude (default: 1).
+ impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
+
+ Returns:
+ Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
+ """
+ upx, upy = _parse_scaling(up)
+ padx0, padx1, pady0, pady1 = _parse_padding(padding)
+ fw, fh = _get_filter_size(f)
+ p = [
+ padx0 + (fw + upx - 1) // 2,
+ padx1 + (fw - upx) // 2,
+ pady0 + (fh + upy - 1) // 2,
+ pady1 + (fh - upy) // 2,
+ ]
+ return upfirdn2d(x, f, up=up, padding=p, flip_filter=flip_filter, gain=gain*upx*upy, impl=impl)
+
+#----------------------------------------------------------------------------
+
+def downsample2d(x, f, down=2, padding=0, flip_filter=False, gain=1, impl='cuda'):
+ r"""Downsample a batch of 2D images using the given 2D FIR filter.
+
+ By default, the result is padded so that its shape is a fraction of the input.
+ User-specified padding is applied on top of that, with negative values
+ indicating cropping. Pixels outside the image are assumed to be zero.
+
+ Args:
+ x: Float32/float64/float16 input tensor of the shape
+ `[batch_size, num_channels, in_height, in_width]`.
+ f: Float32 FIR filter of the shape
+ `[filter_height, filter_width]` (non-separable),
+ `[filter_taps]` (separable), or
+ `None` (identity).
+ down: Integer downsampling factor. Can be a single int or a list/tuple
+ `[x, y]` (default: 1).
+ padding: Padding with respect to the input. Can be a single number or a
+ list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
+ (default: 0).
+ flip_filter: False = convolution, True = correlation (default: False).
+ gain: Overall scaling factor for signal magnitude (default: 1).
+ impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
+
+ Returns:
+ Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
+ """
+ downx, downy = _parse_scaling(down)
+ padx0, padx1, pady0, pady1 = _parse_padding(padding)
+ fw, fh = _get_filter_size(f)
+ p = [
+ padx0 + (fw - downx + 1) // 2,
+ padx1 + (fw - downx) // 2,
+ pady0 + (fh - downy + 1) // 2,
+ pady1 + (fh - downy) // 2,
+ ]
+ return upfirdn2d(x, f, down=down, padding=p, flip_filter=flip_filter, gain=gain, impl=impl)
+
+#----------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/persistence.py b/global_torch/torch_utils/persistence.py
new file mode 100644
index 0000000..0186cfd
--- /dev/null
+++ b/global_torch/torch_utils/persistence.py
@@ -0,0 +1,251 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+"""Facilities for pickling Python code alongside other data.
+
+The pickled code is automatically imported into a separate Python module
+during unpickling. This way, any previously exported pickles will remain
+usable even if the original code is no longer available, or if the current
+version of the code is not consistent with what was originally pickled."""
+
+import sys
+import pickle
+import io
+import inspect
+import copy
+import uuid
+import types
+import dnnlib
+
+#----------------------------------------------------------------------------
+
+_version = 6 # internal version number
+_decorators = set() # {decorator_class, ...}
+_import_hooks = [] # [hook_function, ...]
+_module_to_src_dict = dict() # {module: src, ...}
+_src_to_module_dict = dict() # {src: module, ...}
+
+#----------------------------------------------------------------------------
+
+def persistent_class(orig_class):
+ r"""Class decorator that extends a given class to save its source code
+ when pickled.
+
+ Example:
+
+ from torch_utils import persistence
+
+ @persistence.persistent_class
+ class MyNetwork(torch.nn.Module):
+ def __init__(self, num_inputs, num_outputs):
+ super().__init__()
+ self.fc = MyLayer(num_inputs, num_outputs)
+ ...
+
+ @persistence.persistent_class
+ class MyLayer(torch.nn.Module):
+ ...
+
+ When pickled, any instance of `MyNetwork` and `MyLayer` will save its
+ source code alongside other internal state (e.g., parameters, buffers,
+ and submodules). This way, any previously exported pickle will remain
+ usable even if the class definitions have been modified or are no
+ longer available.
+
+ The decorator saves the source code of the entire Python module
+ containing the decorated class. It does *not* save the source code of
+ any imported modules. Thus, the imported modules must be available
+ during unpickling, also including `torch_utils.persistence` itself.
+
+ It is ok to call functions defined in the same module from the
+ decorated class. However, if the decorated class depends on other
+ classes defined in the same module, they must be decorated as well.
+ This is illustrated in the above example in the case of `MyLayer`.
+
+ It is also possible to employ the decorator just-in-time before
+ calling the constructor. For example:
+
+ cls = MyLayer
+ if want_to_make_it_persistent:
+ cls = persistence.persistent_class(cls)
+ layer = cls(num_inputs, num_outputs)
+
+ As an additional feature, the decorator also keeps track of the
+ arguments that were used to construct each instance of the decorated
+ class. The arguments can be queried via `obj.init_args` and
+ `obj.init_kwargs`, and they are automatically pickled alongside other
+ object state. A typical use case is to first unpickle a previous
+ instance of a persistent class, and then upgrade it to use the latest
+ version of the source code:
+
+ with open('old_pickle.pkl', 'rb') as f:
+ old_net = pickle.load(f)
+ new_net = MyNetwork(*old_obj.init_args, **old_obj.init_kwargs)
+ misc.copy_params_and_buffers(old_net, new_net, require_all=True)
+ """
+ assert isinstance(orig_class, type)
+ if is_persistent(orig_class):
+ return orig_class
+
+ assert orig_class.__module__ in sys.modules
+ orig_module = sys.modules[orig_class.__module__]
+ orig_module_src = _module_to_src(orig_module)
+
+ class Decorator(orig_class):
+ _orig_module_src = orig_module_src
+ _orig_class_name = orig_class.__name__
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ self._init_args = copy.deepcopy(args)
+ self._init_kwargs = copy.deepcopy(kwargs)
+ assert orig_class.__name__ in orig_module.__dict__
+ _check_pickleable(self.__reduce__())
+
+ @property
+ def init_args(self):
+ return copy.deepcopy(self._init_args)
+
+ @property
+ def init_kwargs(self):
+ return dnnlib.EasyDict(copy.deepcopy(self._init_kwargs))
+
+ def __reduce__(self):
+ fields = list(super().__reduce__())
+ fields += [None] * max(3 - len(fields), 0)
+ if fields[0] is not _reconstruct_persistent_obj:
+ meta = dict(type='class', version=_version, module_src=self._orig_module_src, class_name=self._orig_class_name, state=fields[2])
+ fields[0] = _reconstruct_persistent_obj # reconstruct func
+ fields[1] = (meta,) # reconstruct args
+ fields[2] = None # state dict
+ return tuple(fields)
+
+ Decorator.__name__ = orig_class.__name__
+ _decorators.add(Decorator)
+ return Decorator
+
+#----------------------------------------------------------------------------
+
+def is_persistent(obj):
+ r"""Test whether the given object or class is persistent, i.e.,
+ whether it will save its source code when pickled.
+ """
+ try:
+ if obj in _decorators:
+ return True
+ except TypeError:
+ pass
+ return type(obj) in _decorators # pylint: disable=unidiomatic-typecheck
+
+#----------------------------------------------------------------------------
+
+def import_hook(hook):
+ r"""Register an import hook that is called whenever a persistent object
+ is being unpickled. A typical use case is to patch the pickled source
+ code to avoid errors and inconsistencies when the API of some imported
+ module has changed.
+
+ The hook should have the following signature:
+
+ hook(meta) -> modified meta
+
+ `meta` is an instance of `dnnlib.EasyDict` with the following fields:
+
+ type: Type of the persistent object, e.g. `'class'`.
+ version: Internal version number of `torch_utils.persistence`.
+ module_src Original source code of the Python module.
+ class_name: Class name in the original Python module.
+ state: Internal state of the object.
+
+ Example:
+
+ @persistence.import_hook
+ def wreck_my_network(meta):
+ if meta.class_name == 'MyNetwork':
+ print('MyNetwork is being imported. I will wreck it!')
+ meta.module_src = meta.module_src.replace("True", "False")
+ return meta
+ """
+ assert callable(hook)
+ _import_hooks.append(hook)
+
+#----------------------------------------------------------------------------
+
+def _reconstruct_persistent_obj(meta):
+ r"""Hook that is called internally by the `pickle` module to unpickle
+ a persistent object.
+ """
+ meta = dnnlib.EasyDict(meta)
+ meta.state = dnnlib.EasyDict(meta.state)
+ for hook in _import_hooks:
+ meta = hook(meta)
+ assert meta is not None
+
+ assert meta.version == _version
+ module = _src_to_module(meta.module_src)
+
+ assert meta.type == 'class'
+ orig_class = module.__dict__[meta.class_name]
+ decorator_class = persistent_class(orig_class)
+ obj = decorator_class.__new__(decorator_class)
+
+ setstate = getattr(obj, '__setstate__', None)
+ if callable(setstate):
+ setstate(meta.state) # pylint: disable=not-callable
+ else:
+ obj.__dict__.update(meta.state)
+ return obj
+
+#----------------------------------------------------------------------------
+
+def _module_to_src(module):
+ r"""Query the source code of a given Python module.
+ """
+ src = _module_to_src_dict.get(module, None)
+ if src is None:
+ src = inspect.getsource(module)
+ _module_to_src_dict[module] = src
+ _src_to_module_dict[src] = module
+ return src
+
+def _src_to_module(src):
+ r"""Get or create a Python module for the given source code.
+ """
+ module = _src_to_module_dict.get(src, None)
+ if module is None:
+ module_name = "_imported_module_" + uuid.uuid4().hex
+ module = types.ModuleType(module_name)
+ sys.modules[module_name] = module
+ _module_to_src_dict[module] = src
+ _src_to_module_dict[src] = module
+ exec(src, module.__dict__) # pylint: disable=exec-used
+ return module
+
+#----------------------------------------------------------------------------
+
+def _check_pickleable(obj):
+ r"""Check that the given object is pickleable, raising an exception if
+ it is not. This function is expected to be considerably more efficient
+ than actually pickling the object.
+ """
+ def recurse(obj):
+ if isinstance(obj, (list, tuple, set)):
+ return [recurse(x) for x in obj]
+ if isinstance(obj, dict):
+ return [[recurse(x), recurse(y)] for x, y in obj.items()]
+ if isinstance(obj, (str, int, float, bool, bytes, bytearray)):
+ return None # Python primitive types are pickleable.
+ if f'{type(obj).__module__}.{type(obj).__name__}' in ['numpy.ndarray', 'torch.Tensor']:
+ return None # NumPy arrays and PyTorch tensors are pickleable.
+ if is_persistent(obj):
+ return None # Persistent objects are pickleable, by virtue of the constructor check.
+ return obj
+ with io.BytesIO() as f:
+ pickle.dump(recurse(obj), f)
+
+#----------------------------------------------------------------------------
diff --git a/global_torch/torch_utils/training_stats.py b/global_torch/torch_utils/training_stats.py
new file mode 100644
index 0000000..26f467f
--- /dev/null
+++ b/global_torch/torch_utils/training_stats.py
@@ -0,0 +1,268 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+"""Facilities for reporting and collecting training statistics across
+multiple processes and devices. The interface is designed to minimize
+synchronization overhead as well as the amount of boilerplate in user
+code."""
+
+import re
+import numpy as np
+import torch
+import dnnlib
+
+from . import misc
+
+#----------------------------------------------------------------------------
+
+_num_moments = 3 # [num_scalars, sum_of_scalars, sum_of_squares]
+_reduce_dtype = torch.float32 # Data type to use for initial per-tensor reduction.
+_counter_dtype = torch.float64 # Data type to use for the internal counters.
+_rank = 0 # Rank of the current process.
+_sync_device = None # Device to use for multiprocess communication. None = single-process.
+_sync_called = False # Has _sync() been called yet?
+_counters = dict() # Running counters on each device, updated by report(): name => device => torch.Tensor
+_cumulative = dict() # Cumulative counters on the CPU, updated by _sync(): name => torch.Tensor
+
+#----------------------------------------------------------------------------
+
+def init_multiprocessing(rank, sync_device):
+ r"""Initializes `torch_utils.training_stats` for collecting statistics
+ across multiple processes.
+
+ This function must be called after
+ `torch.distributed.init_process_group()` and before `Collector.update()`.
+ The call is not necessary if multi-process collection is not needed.
+
+ Args:
+ rank: Rank of the current process.
+ sync_device: PyTorch device to use for inter-process
+ communication, or None to disable multi-process
+ collection. Typically `torch.device('cuda', rank)`.
+ """
+ global _rank, _sync_device
+ assert not _sync_called
+ _rank = rank
+ _sync_device = sync_device
+
+#----------------------------------------------------------------------------
+
+@misc.profiled_function
+def report(name, value):
+ r"""Broadcasts the given set of scalars to all interested instances of
+ `Collector`, across device and process boundaries.
+
+ This function is expected to be extremely cheap and can be safely
+ called from anywhere in the training loop, loss function, or inside a
+ `torch.nn.Module`.
+
+ Warning: The current implementation expects the set of unique names to
+ be consistent across processes. Please make sure that `report()` is
+ called at least once for each unique name by each process, and in the
+ same order. If a given process has no scalars to broadcast, it can do
+ `report(name, [])` (empty list).
+
+ Args:
+ name: Arbitrary string specifying the name of the statistic.
+ Averages are accumulated separately for each unique name.
+ value: Arbitrary set of scalars. Can be a list, tuple,
+ NumPy array, PyTorch tensor, or Python scalar.
+
+ Returns:
+ The same `value` that was passed in.
+ """
+ if name not in _counters:
+ _counters[name] = dict()
+
+ elems = torch.as_tensor(value)
+ if elems.numel() == 0:
+ return value
+
+ elems = elems.detach().flatten().to(_reduce_dtype)
+ moments = torch.stack([
+ torch.ones_like(elems).sum(),
+ elems.sum(),
+ elems.square().sum(),
+ ])
+ assert moments.ndim == 1 and moments.shape[0] == _num_moments
+ moments = moments.to(_counter_dtype)
+
+ device = moments.device
+ if device not in _counters[name]:
+ _counters[name][device] = torch.zeros_like(moments)
+ _counters[name][device].add_(moments)
+ return value
+
+#----------------------------------------------------------------------------
+
+def report0(name, value):
+ r"""Broadcasts the given set of scalars by the first process (`rank = 0`),
+ but ignores any scalars provided by the other processes.
+ See `report()` for further details.
+ """
+ report(name, value if _rank == 0 else [])
+ return value
+
+#----------------------------------------------------------------------------
+
+class Collector:
+ r"""Collects the scalars broadcasted by `report()` and `report0()` and
+ computes their long-term averages (mean and standard deviation) over
+ user-defined periods of time.
+
+ The averages are first collected into internal counters that are not
+ directly visible to the user. They are then copied to the user-visible
+ state as a result of calling `update()` and can then be queried using
+ `mean()`, `std()`, `as_dict()`, etc. Calling `update()` also resets the
+ internal counters for the next round, so that the user-visible state
+ effectively reflects averages collected between the last two calls to
+ `update()`.
+
+ Args:
+ regex: Regular expression defining which statistics to
+ collect. The default is to collect everything.
+ keep_previous: Whether to retain the previous averages if no
+ scalars were collected on a given round
+ (default: True).
+ """
+ def __init__(self, regex='.*', keep_previous=True):
+ self._regex = re.compile(regex)
+ self._keep_previous = keep_previous
+ self._cumulative = dict()
+ self._moments = dict()
+ self.update()
+ self._moments.clear()
+
+ def names(self):
+ r"""Returns the names of all statistics broadcasted so far that
+ match the regular expression specified at construction time.
+ """
+ return [name for name in _counters if self._regex.fullmatch(name)]
+
+ def update(self):
+ r"""Copies current values of the internal counters to the
+ user-visible state and resets them for the next round.
+
+ If `keep_previous=True` was specified at construction time, the
+ operation is skipped for statistics that have received no scalars
+ since the last update, retaining their previous averages.
+
+ This method performs a number of GPU-to-CPU transfers and one
+ `torch.distributed.all_reduce()`. It is intended to be called
+ periodically in the main training loop, typically once every
+ N training steps.
+ """
+ if not self._keep_previous:
+ self._moments.clear()
+ for name, cumulative in _sync(self.names()):
+ if name not in self._cumulative:
+ self._cumulative[name] = torch.zeros([_num_moments], dtype=_counter_dtype)
+ delta = cumulative - self._cumulative[name]
+ self._cumulative[name].copy_(cumulative)
+ if float(delta[0]) != 0:
+ self._moments[name] = delta
+
+ def _get_delta(self, name):
+ r"""Returns the raw moments that were accumulated for the given
+ statistic between the last two calls to `update()`, or zero if
+ no scalars were collected.
+ """
+ assert self._regex.fullmatch(name)
+ if name not in self._moments:
+ self._moments[name] = torch.zeros([_num_moments], dtype=_counter_dtype)
+ return self._moments[name]
+
+ def num(self, name):
+ r"""Returns the number of scalars that were accumulated for the given
+ statistic between the last two calls to `update()`, or zero if
+ no scalars were collected.
+ """
+ delta = self._get_delta(name)
+ return int(delta[0])
+
+ def mean(self, name):
+ r"""Returns the mean of the scalars that were accumulated for the
+ given statistic between the last two calls to `update()`, or NaN if
+ no scalars were collected.
+ """
+ delta = self._get_delta(name)
+ if int(delta[0]) == 0:
+ return float('nan')
+ return float(delta[1] / delta[0])
+
+ def std(self, name):
+ r"""Returns the standard deviation of the scalars that were
+ accumulated for the given statistic between the last two calls to
+ `update()`, or NaN if no scalars were collected.
+ """
+ delta = self._get_delta(name)
+ if int(delta[0]) == 0 or not np.isfinite(float(delta[1])):
+ return float('nan')
+ if int(delta[0]) == 1:
+ return float(0)
+ mean = float(delta[1] / delta[0])
+ raw_var = float(delta[2] / delta[0])
+ return np.sqrt(max(raw_var - np.square(mean), 0))
+
+ def as_dict(self):
+ r"""Returns the averages accumulated between the last two calls to
+ `update()` as an `dnnlib.EasyDict`. The contents are as follows:
+
+ dnnlib.EasyDict(
+ NAME = dnnlib.EasyDict(num=FLOAT, mean=FLOAT, std=FLOAT),
+ ...
+ )
+ """
+ stats = dnnlib.EasyDict()
+ for name in self.names():
+ stats[name] = dnnlib.EasyDict(num=self.num(name), mean=self.mean(name), std=self.std(name))
+ return stats
+
+ def __getitem__(self, name):
+ r"""Convenience getter.
+ `collector[name]` is a synonym for `collector.mean(name)`.
+ """
+ return self.mean(name)
+
+#----------------------------------------------------------------------------
+
+def _sync(names):
+ r"""Synchronize the global cumulative counters across devices and
+ processes. Called internally by `Collector.update()`.
+ """
+ if len(names) == 0:
+ return []
+ global _sync_called
+ _sync_called = True
+
+ # Collect deltas within current rank.
+ deltas = []
+ device = _sync_device if _sync_device is not None else torch.device('cpu')
+ for name in names:
+ delta = torch.zeros([_num_moments], dtype=_counter_dtype, device=device)
+ for counter in _counters[name].values():
+ delta.add_(counter.to(device))
+ counter.copy_(torch.zeros_like(counter))
+ deltas.append(delta)
+ deltas = torch.stack(deltas)
+
+ # Sum deltas across ranks.
+ if _sync_device is not None:
+ torch.distributed.all_reduce(deltas)
+
+ # Update cumulative values.
+ deltas = deltas.cpu()
+ for idx, name in enumerate(names):
+ if name not in _cumulative:
+ _cumulative[name] = torch.zeros([_num_moments], dtype=_counter_dtype)
+ _cumulative[name].add_(deltas[idx])
+
+ # Return name-value pairs.
+ return [(name, _cumulative[name]) for name in names]
+
+#----------------------------------------------------------------------------
diff --git a/global_torch/training/__init__.py b/global_torch/training/__init__.py
new file mode 100644
index 0000000..e1e1a5b
--- /dev/null
+++ b/global_torch/training/__init__.py
@@ -0,0 +1,9 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+# empty
diff --git a/global_torch/training/networks.py b/global_torch/training/networks.py
new file mode 100644
index 0000000..3abd4b1
--- /dev/null
+++ b/global_torch/training/networks.py
@@ -0,0 +1,809 @@
+# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+
+import numpy as np
+import torch
+from torch_utils import misc
+from torch_utils import persistence
+from torch_utils.ops import conv2d_resample
+from torch_utils.ops import upfirdn2d
+from torch_utils.ops import bias_act
+from torch_utils.ops import fma
+
+#----------------------------------------------------------------------------
+
+@misc.profiled_function
+def normalize_2nd_moment(x, dim=1, eps=1e-8):
+ return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()
+
+#----------------------------------------------------------------------------
+
+@misc.profiled_function
+def modulated_conv2d(
+ x, # Input tensor of shape [batch_size, in_channels, in_height, in_width].
+ weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width].
+ styles, # Modulation coefficients of shape [batch_size, in_channels].
+ noise = None, # Optional noise tensor to add to the output activations.
+ up = 1, # Integer upsampling factor.
+ down = 1, # Integer downsampling factor.
+ padding = 0, # Padding with respect to the upsampled image.
+ resample_filter = None, # Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter().
+ demodulate = True, # Apply weight demodulation?
+ flip_weight = True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d).
+ fused_modconv = True, # Perform modulation, convolution, and demodulation as a single fused operation?
+):
+ batch_size = x.shape[0]
+ out_channels, in_channels, kh, kw = weight.shape
+ misc.assert_shape(weight, [out_channels, in_channels, kh, kw]) # [OIkk]
+ misc.assert_shape(x, [batch_size, in_channels, None, None]) # [NIHW]
+ misc.assert_shape(styles, [batch_size, in_channels]) # [NI]
+
+ # Pre-normalize inputs to avoid FP16 overflow.
+ if x.dtype == torch.float16 and demodulate:
+ weight = weight * (1 / np.sqrt(in_channels * kh * kw) / weight.norm(float('inf'), dim=[1,2,3], keepdim=True)) # max_Ikk
+ styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) # max_I
+
+ # Calculate per-sample weights and demodulation coefficients.
+ w = None
+ dcoefs = None
+ if demodulate or fused_modconv:
+ w = weight.unsqueeze(0) # [NOIkk]
+ w = w * styles.reshape(batch_size, 1, -1, 1, 1) # [NOIkk]
+ if demodulate:
+ dcoefs = (w.square().sum(dim=[2,3,4]) + 1e-8).rsqrt() # [NO]
+ if demodulate and fused_modconv:
+ w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) # [NOIkk]
+
+ # Execute by scaling the activations before and after the convolution.
+ if not fused_modconv:
+ x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1)
+ x = conv2d_resample.conv2d_resample(x=x, w=weight.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, flip_weight=flip_weight)
+ if demodulate and noise is not None:
+ x = fma.fma(x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype))
+ elif demodulate:
+ x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1)
+ elif noise is not None:
+ x = x.add_(noise.to(x.dtype))
+ return x
+
+ # Execute as one fused op using grouped convolution.
+ with misc.suppress_tracer_warnings(): # this value will be treated as a constant
+ batch_size = int(batch_size)
+ misc.assert_shape(x, [batch_size, in_channels, None, None])
+ x = x.reshape(1, -1, *x.shape[2:])
+ w = w.reshape(-1, in_channels, kh, kw)
+ x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, groups=batch_size, flip_weight=flip_weight)
+ x = x.reshape(batch_size, -1, *x.shape[2:])
+ if noise is not None:
+ x = x.add_(noise)
+ return x
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class FullyConnectedLayer(torch.nn.Module):
+ def __init__(self,
+ in_features, # Number of input features.
+ out_features, # Number of output features.
+ bias = True, # Apply additive bias before the activation function?
+ activation = 'linear', # Activation function: 'relu', 'lrelu', etc.
+ lr_multiplier = 1, # Learning rate multiplier.
+ bias_init = 0, # Initial value for the additive bias.
+ ):
+ super().__init__()
+ self.activation = activation
+ self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier)
+ self.bias = torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None
+ self.weight_gain = lr_multiplier / np.sqrt(in_features)
+ self.bias_gain = lr_multiplier
+
+ def forward(self, x):
+ w = self.weight.to(x.dtype) * self.weight_gain
+ b = self.bias
+ if b is not None:
+ b = b.to(x.dtype)
+ if self.bias_gain != 1:
+ b = b * self.bias_gain
+
+ if self.activation == 'linear' and b is not None:
+ x = torch.addmm(b.unsqueeze(0), x, w.t())
+ else:
+ x = x.matmul(w.t())
+ x = bias_act.bias_act(x, b, act=self.activation)
+ return x
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class Conv2dLayer(torch.nn.Module):
+ def __init__(self,
+ in_channels, # Number of input channels.
+ out_channels, # Number of output channels.
+ kernel_size, # Width and height of the convolution kernel.
+ bias = True, # Apply additive bias before the activation function?
+ activation = 'linear', # Activation function: 'relu', 'lrelu', etc.
+ up = 1, # Integer upsampling factor.
+ down = 1, # Integer downsampling factor.
+ resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
+ conv_clamp = None, # Clamp the output to +-X, None = disable clamping.
+ channels_last = False, # Expect the input to have memory_format=channels_last?
+ trainable = True, # Update the weights of this layer during training?
+ ):
+ super().__init__()
+ self.activation = activation
+ self.up = up
+ self.down = down
+ self.conv_clamp = conv_clamp
+ self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
+ self.padding = kernel_size // 2
+ self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
+ self.act_gain = bias_act.activation_funcs[activation].def_gain
+
+ memory_format = torch.channels_last if channels_last else torch.contiguous_format
+ weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format)
+ bias = torch.zeros([out_channels]) if bias else None
+ if trainable:
+ self.weight = torch.nn.Parameter(weight)
+ self.bias = torch.nn.Parameter(bias) if bias is not None else None
+ else:
+ self.register_buffer('weight', weight)
+ if bias is not None:
+ self.register_buffer('bias', bias)
+ else:
+ self.bias = None
+
+ def forward(self, x, gain=1):
+ w = self.weight * self.weight_gain
+ b = self.bias.to(x.dtype) if self.bias is not None else None
+ flip_weight = (self.up == 1) # slightly faster
+ x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=self.resample_filter, up=self.up, down=self.down, padding=self.padding, flip_weight=flip_weight)
+
+ act_gain = self.act_gain * gain
+ act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
+ x = bias_act.bias_act(x, b, act=self.activation, gain=act_gain, clamp=act_clamp)
+ return x
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class MappingNetwork(torch.nn.Module):
+ def __init__(self,
+ z_dim, # Input latent (Z) dimensionality, 0 = no latent.
+ c_dim, # Conditioning label (C) dimensionality, 0 = no label.
+ w_dim, # Intermediate latent (W) dimensionality.
+ num_ws, # Number of intermediate latents to output, None = do not broadcast.
+ num_layers = 8, # Number of mapping layers.
+ embed_features = None, # Label embedding dimensionality, None = same as w_dim.
+ layer_features = None, # Number of intermediate features in the mapping layers, None = same as w_dim.
+ activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc.
+ lr_multiplier = 0.01, # Learning rate multiplier for the mapping layers.
+ w_avg_beta = 0.995, # Decay for tracking the moving average of W during training, None = do not track.
+ ):
+ super().__init__()
+ self.z_dim = z_dim
+ self.c_dim = c_dim
+ self.w_dim = w_dim
+ self.num_ws = num_ws
+ self.num_layers = num_layers
+ self.w_avg_beta = w_avg_beta
+
+ if embed_features is None:
+ embed_features = w_dim
+ if c_dim == 0:
+ embed_features = 0
+ if layer_features is None:
+ layer_features = w_dim
+ features_list = [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim]
+
+ if c_dim > 0:
+ self.embed = FullyConnectedLayer(c_dim, embed_features)
+ for idx in range(num_layers):
+ in_features = features_list[idx]
+ out_features = features_list[idx + 1]
+ layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier)
+ setattr(self, f'fc{idx}', layer)
+
+ if num_ws is not None and w_avg_beta is not None:
+ self.register_buffer('w_avg', torch.zeros([w_dim]))
+
+ def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False):
+ # Embed, normalize, and concat inputs.
+ x = None
+ with torch.autograd.profiler.record_function('input'):
+ if self.z_dim > 0:
+ misc.assert_shape(z, [None, self.z_dim])
+ x = normalize_2nd_moment(z.to(torch.float32))
+ if self.c_dim > 0:
+ misc.assert_shape(c, [None, self.c_dim])
+ y = normalize_2nd_moment(self.embed(c.to(torch.float32)))
+ x = torch.cat([x, y], dim=1) if x is not None else y
+
+ # Main layers.
+ for idx in range(self.num_layers):
+ layer = getattr(self, f'fc{idx}')
+ x = layer(x)
+
+ # Update moving average of W.
+ if self.w_avg_beta is not None and self.training and not skip_w_avg_update:
+ with torch.autograd.profiler.record_function('update_w_avg'):
+ self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta))
+
+ # Broadcast.
+ if self.num_ws is not None:
+ with torch.autograd.profiler.record_function('broadcast'):
+ x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
+
+ # Apply truncation.
+ if truncation_psi != 1:
+ with torch.autograd.profiler.record_function('truncate'):
+ assert self.w_avg_beta is not None
+ if self.num_ws is None or truncation_cutoff is None:
+ x = self.w_avg.lerp(x, truncation_psi)
+ else:
+ x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi)
+ return x
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class SynthesisLayer(torch.nn.Module):
+ def __init__(self,
+ in_channels, # Number of input channels.
+ out_channels, # Number of output channels.
+ w_dim, # Intermediate latent (W) dimensionality.
+ resolution, # Resolution of this layer.
+ kernel_size = 3, # Convolution kernel size.
+ up = 1, # Integer upsampling factor.
+ use_noise = True, # Enable noise input?
+ activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc.
+ resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
+ conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping.
+ channels_last = False, # Use channels_last format for the weights?
+ name = ''
+ ):
+ super().__init__()
+ self.resolution = resolution
+ self.up = up
+ self.use_noise = use_noise
+ self.activation = activation
+ self.conv_clamp = conv_clamp
+ self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
+ self.padding = kernel_size // 2
+ self.act_gain = bias_act.activation_funcs[activation].def_gain
+ self.name = name
+ self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
+ memory_format = torch.channels_last if channels_last else torch.contiguous_format
+ self.weight = torch.nn.Parameter(torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format))
+ if use_noise:
+ self.register_buffer('noise_const', torch.randn([resolution, resolution]))
+ self.noise_strength = torch.nn.Parameter(torch.zeros([]))
+ self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
+ print(f"name:{name} Resolution: {resolution}, InC: {in_channels}, OutC:{out_channels}, w_dim: {w_dim}")
+
+ def forward(self, x, w, noise_mode='random', fused_modconv=True, gain=1, encoded_styles=None):
+ assert noise_mode in ['random', 'const', 'none']
+ in_resolution = self.resolution // self.up
+ # misc.assert_shape(x, [None, self.weight.shape[1], in_resolution, in_resolution]) # not need to be squre
+ if encoded_styles is None:
+ styles = self.affine(w)
+ else:
+ styles = encoded_styles[self.name]
+
+ noise = None
+ if self.use_noise and noise_mode == 'random':
+ noise = torch.randn([x.shape[0], 1, self.resolution, self.resolution], device=x.device) * self.noise_strength
+ if self.use_noise and noise_mode == 'const':
+ noise = self.noise_const * self.noise_strength
+
+ flip_weight = (self.up == 1) # slightly faster
+ x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=noise, up=self.up,
+ padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight, fused_modconv=fused_modconv)
+
+ act_gain = self.act_gain * gain
+ act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
+ x = bias_act.bias_act(x, self.bias.to(x.dtype), act=self.activation, gain=act_gain, clamp=act_clamp)
+ return x
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class ToRGBLayer(torch.nn.Module):
+ def __init__(self, in_channels, out_channels, w_dim, kernel_size=1, conv_clamp=None, channels_last=False, name=''):
+ super().__init__()
+ self.conv_clamp = conv_clamp
+ self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
+ memory_format = torch.channels_last if channels_last else torch.contiguous_format
+ self.weight = torch.nn.Parameter(torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format))
+ self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
+ self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
+ self.name = name
+ print(f"name:{name} InC: {in_channels}, OutC:{out_channels}, w_dim: {w_dim}")
+
+
+ def forward(self, x, w, fused_modconv=True, encoded_styles=None):
+ if encoded_styles is None:
+ styles = self.affine(w) #* self.weight_gain
+
+ else:
+ styles = encoded_styles[self.name]
+ tmp_s=styles* self.weight_gain
+
+ x = modulated_conv2d(x=x, weight=self.weight, styles=tmp_s, demodulate=False, fused_modconv=fused_modconv)
+ x = bias_act.bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp)
+ return x
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class SynthesisBlock(torch.nn.Module):
+ def __init__(self,
+ in_channels, # Number of input channels, 0 = first block.
+ out_channels, # Number of output channels.
+ w_dim, # Intermediate latent (W) dimensionality.
+ resolution, # Resolution of this block.
+ img_channels, # Number of output color channels.
+ is_last, # Is this the last block?
+ architecture = 'skip', # Architecture: 'orig', 'skip', 'resnet'.
+ resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
+ conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping.
+ use_fp16 = False, # Use FP16 for this block?
+ fp16_channels_last = False, # Use channels-last memory format with FP16?
+ **layer_kwargs, # Arguments for SynthesisLayer.
+ ):
+ assert architecture in ['orig', 'skip', 'resnet']
+ super().__init__()
+ self.in_channels = in_channels
+ self.w_dim = w_dim
+ self.resolution = resolution
+ self.img_channels = img_channels
+ self.is_last = is_last
+ self.architecture = architecture
+ self.use_fp16 = use_fp16
+ self.channels_last = (use_fp16 and fp16_channels_last)
+ self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
+ self.num_conv = 0
+ self.num_torgb = 0
+
+
+ if in_channels == 0:
+ self.const = torch.nn.Parameter(torch.randn([out_channels, resolution, resolution]))
+
+ if in_channels != 0:
+ self.conv0 = SynthesisLayer(in_channels, out_channels, w_dim=w_dim, resolution=resolution, up=2,
+ resample_filter=resample_filter, conv_clamp=conv_clamp, channels_last=self.channels_last, name=f'conv0_resolution_{resolution}', **layer_kwargs)
+ self.num_conv += 1
+
+ self.conv1 = SynthesisLayer(out_channels, out_channels, w_dim=w_dim, resolution=resolution,
+ conv_clamp=conv_clamp, channels_last=self.channels_last, name=f'conv1_resolution_{resolution}', **layer_kwargs)
+ self.num_conv += 1
+
+ if is_last or architecture == 'skip':
+ self.torgb = ToRGBLayer(out_channels, img_channels, w_dim=w_dim,
+ conv_clamp=conv_clamp, channels_last=self.channels_last, name=f'toRGB_resolution_{resolution}')
+ self.num_torgb += 1
+
+ if in_channels != 0 and architecture == 'resnet':
+ self.skip = Conv2dLayer(in_channels, out_channels, kernel_size=1, bias=False, up=2,
+ resample_filter=resample_filter, channels_last=self.channels_last)
+
+ def forward(self, x, img, ws, force_fp32=False, fused_modconv=None, encoded_styles=None, **layer_kwargs):
+
+ class NoneIter:
+ def __init__(self):
+ pass
+ def __iter__(self):
+ return self
+ def __next__(self):
+ return None
+
+ if encoded_styles is None:
+ misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
+ w_iter = iter(ws.unbind(dim=1))
+ else:
+ w_iter = iter(NoneIter())
+
+ dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
+ memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
+ if fused_modconv is None:
+ with misc.suppress_tracer_warnings(): # this value will be treated as a constant
+ fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1)
+
+ # Input.
+ if self.in_channels == 0:
+ x = self.const.to(dtype=dtype, memory_format=memory_format)
+ if encoded_styles is None:
+ x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1])
+ else:
+ x = x.unsqueeze(0).repeat([encoded_styles['conv1_resolution_4'].shape[0], 1, 1, 1])
+ else:
+ # misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2]) # not need to be squre
+ x = x.to(dtype=dtype, memory_format=memory_format)
+
+ # Main layers.
+ if self.in_channels == 0:
+ x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, encoded_styles=encoded_styles, **layer_kwargs)
+ elif self.architecture == 'resnet':
+ y = self.skip(x, gain=np.sqrt(0.5))
+ x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, encoded_styles=encoded_styles, **layer_kwargs)
+ x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, encoded_styles=encoded_styles, gain=np.sqrt(0.5), **layer_kwargs)
+ x = y.add_(x)
+ else:
+ x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, encoded_styles=encoded_styles, **layer_kwargs)
+ x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, encoded_styles=encoded_styles, **layer_kwargs)
+
+ # ToRGB.
+ if img is not None:
+ # misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2]) ## not need to be squre
+ img = upfirdn2d.upsample2d(img, self.resample_filter)
+ if self.is_last or self.architecture == 'skip':
+ y = self.torgb(x, next(w_iter), fused_modconv=fused_modconv, encoded_styles=encoded_styles, )
+ y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
+ img = img.add_(y) if img is not None else y
+
+ assert x.dtype == dtype
+ assert img is None or img.dtype == torch.float32
+ return x, img
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class SynthesisNetwork(torch.nn.Module):
+ def __init__(self,
+ w_dim, # Intermediate latent (W) dimensionality.
+ img_resolution, # Output image resolution.
+ img_channels, # Number of color channels.
+ channel_base = 32768, # Overall multiplier for the number of channels.
+ channel_max = 512, # Maximum number of channels in any layer.
+ num_fp16_res = 0, # Use FP16 for the N highest resolutions.
+ **block_kwargs, # Arguments for SynthesisBlock.
+ ):
+ assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0
+ super().__init__()
+ self.w_dim = w_dim
+ self.img_resolution = img_resolution
+ self.img_resolution_log2 = int(np.log2(img_resolution))
+ self.img_channels = img_channels
+ self.block_resolutions = [2 ** i for i in range(2, self.img_resolution_log2 + 1)]
+ channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions}
+ fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
+
+ self.num_ws = 0
+ for res in self.block_resolutions:
+ in_channels = channels_dict[res // 2] if res > 4 else 0
+ out_channels = channels_dict[res]
+ use_fp16 = (res >= fp16_resolution)
+ is_last = (res == self.img_resolution)
+ block = SynthesisBlock(in_channels, out_channels, w_dim=w_dim, resolution=res,
+ img_channels=img_channels, is_last=is_last, use_fp16=use_fp16, **block_kwargs)
+ self.num_ws += block.num_conv
+ if is_last:
+ self.num_ws += block.num_torgb
+ setattr(self, f'b{res}', block)
+
+ def forward(self, ws, encoded_styles=None, **block_kwargs):
+ if encoded_styles is None:
+ block_ws = []
+ with torch.autograd.profiler.record_function('split_ws'):
+ misc.assert_shape(ws, [None, self.num_ws, self.w_dim])
+ ws = ws.to(torch.float32)
+ w_idx = 0
+ for res in self.block_resolutions:
+ block = getattr(self, f'b{res}')
+ block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
+ w_idx += block.num_conv
+
+ x = img = None
+ for res, cur_ws in zip(self.block_resolutions, block_ws):
+ block = getattr(self, f'b{res}')
+ x, img = block(x, img, cur_ws, encoded_styles=encoded_styles, **block_kwargs)
+ else:
+ x = img = None
+ for res in self.block_resolutions:
+ block = getattr(self, f'b{res}')
+ x, img = block(x, img, None, encoded_styles=encoded_styles, **block_kwargs)
+ return img
+
+ def W2S(self,ws):
+
+ i=0
+ encoded_styles={}
+ for res in self.block_resolutions:
+ block = getattr(self, f'b{res}')
+ if res==4:
+ s=block.conv1.affine(ws[:,i])
+ encoded_styles[f'conv1_resolution_{res}'] =s
+ i+=1
+ s=block.torgb.affine(ws[:,i]) #* block.torgb.weight_gain
+ encoded_styles[f'toRGB_resolution_{res}'] =s
+# i+=1
+ else:
+# print(res,i)
+ s=block.conv0.affine(ws[:,i])
+ encoded_styles[f'conv0_resolution_{res}'] =s
+ i+=1
+# print(res,i)
+ s=block.conv1.affine(ws[:,i])
+ encoded_styles[f'conv1_resolution_{res}'] =s
+ i+=1
+ # toRGB and next layer conv0 use the same w
+ s=block.torgb.affine(ws[:,i])#* block.torgb.weight_gain
+ encoded_styles[f'toRGB_resolution_{res}'] =s
+# i+=1
+# print(i)
+
+
+
+
+ return encoded_styles
+
+
+
+
+
+
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class Generator(torch.nn.Module):
+ def __init__(self,
+ z_dim, # Input latent (Z) dimensionality.
+ c_dim, # Conditioning label (C) dimensionality.
+ w_dim, # Intermediate latent (W) dimensionality.
+ img_resolution, # Output resolution.
+ img_channels, # Number of output color channels.
+ mapping_kwargs = {}, # Arguments for MappingNetwork.
+ synthesis_kwargs = {}, # Arguments for SynthesisNetwork.
+ ):
+ super().__init__()
+ self.z_dim = z_dim
+ self.c_dim = c_dim
+ self.w_dim = w_dim
+ self.img_resolution = img_resolution
+ self.img_channels = img_channels
+ self.synthesis = SynthesisNetwork(w_dim=w_dim, img_resolution=img_resolution, img_channels=img_channels, **synthesis_kwargs)
+ self.num_ws = self.synthesis.num_ws
+ self.mapping = MappingNetwork(z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs)
+
+ def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, encoded_styles=None, **synthesis_kwargs):
+ if encoded_styles is None:
+ ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff)
+ else:
+ ws = None
+ img = self.synthesis(ws, encoded_styles=encoded_styles, **synthesis_kwargs)
+ return img
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class DiscriminatorBlock(torch.nn.Module):
+ def __init__(self,
+ in_channels, # Number of input channels, 0 = first block.
+ tmp_channels, # Number of intermediate channels.
+ out_channels, # Number of output channels.
+ resolution, # Resolution of this block.
+ img_channels, # Number of input color channels.
+ first_layer_idx, # Index of the first layer.
+ architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
+ activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc.
+ resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
+ conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping.
+ use_fp16 = False, # Use FP16 for this block?
+ fp16_channels_last = False, # Use channels-last memory format with FP16?
+ freeze_layers = 0, # Freeze-D: Number of layers to freeze.
+ ):
+ assert in_channels in [0, tmp_channels]
+ assert architecture in ['orig', 'skip', 'resnet']
+ super().__init__()
+ self.in_channels = in_channels
+ self.resolution = resolution
+ self.img_channels = img_channels
+ self.first_layer_idx = first_layer_idx
+ self.architecture = architecture
+ self.use_fp16 = use_fp16
+ self.channels_last = (use_fp16 and fp16_channels_last)
+ self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
+
+ self.num_layers = 0
+ def trainable_gen():
+ while True:
+ layer_idx = self.first_layer_idx + self.num_layers
+ trainable = (layer_idx >= freeze_layers)
+ self.num_layers += 1
+ yield trainable
+ trainable_iter = trainable_gen()
+
+ if in_channels == 0 or architecture == 'skip':
+ self.fromrgb = Conv2dLayer(img_channels, tmp_channels, kernel_size=1, activation=activation,
+ trainable=next(trainable_iter), conv_clamp=conv_clamp, channels_last=self.channels_last)
+
+ self.conv0 = Conv2dLayer(tmp_channels, tmp_channels, kernel_size=3, activation=activation,
+ trainable=next(trainable_iter), conv_clamp=conv_clamp, channels_last=self.channels_last)
+
+ self.conv1 = Conv2dLayer(tmp_channels, out_channels, kernel_size=3, activation=activation, down=2,
+ trainable=next(trainable_iter), resample_filter=resample_filter, conv_clamp=conv_clamp, channels_last=self.channels_last)
+
+ if architecture == 'resnet':
+ self.skip = Conv2dLayer(tmp_channels, out_channels, kernel_size=1, bias=False, down=2,
+ trainable=next(trainable_iter), resample_filter=resample_filter, channels_last=self.channels_last)
+
+ def forward(self, x, img, force_fp32=False):
+ dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
+ memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
+
+ # Input.
+ if x is not None:
+ misc.assert_shape(x, [None, self.in_channels, self.resolution, self.resolution])
+ x = x.to(dtype=dtype, memory_format=memory_format)
+
+ # FromRGB.
+ if self.in_channels == 0 or self.architecture == 'skip':
+ misc.assert_shape(img, [None, self.img_channels, self.resolution, self.resolution])
+ img = img.to(dtype=dtype, memory_format=memory_format)
+ y = self.fromrgb(img)
+ x = x + y if x is not None else y
+ img = upfirdn2d.downsample2d(img, self.resample_filter) if self.architecture == 'skip' else None
+
+ # Main layers.
+ if self.architecture == 'resnet':
+ y = self.skip(x, gain=np.sqrt(0.5))
+ x = self.conv0(x)
+ x = self.conv1(x, gain=np.sqrt(0.5))
+ x = y.add_(x)
+ else:
+ x = self.conv0(x)
+ x = self.conv1(x)
+
+ assert x.dtype == dtype
+ return x, img
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class MinibatchStdLayer(torch.nn.Module):
+ def __init__(self, group_size, num_channels=1):
+ super().__init__()
+ self.group_size = group_size
+ self.num_channels = num_channels
+
+ def forward(self, x):
+ N, C, H, W = x.shape
+ with misc.suppress_tracer_warnings(): # as_tensor results are registered as constants
+ G = torch.min(torch.as_tensor(self.group_size), torch.as_tensor(N)) if self.group_size is not None else N
+ F = self.num_channels
+ c = C // F
+
+ y = x.reshape(G, -1, F, c, H, W) # [GnFcHW] Split minibatch N into n groups of size G, and channels C into F groups of size c.
+ y = y - y.mean(dim=0) # [GnFcHW] Subtract mean over group.
+ y = y.square().mean(dim=0) # [nFcHW] Calc variance over group.
+ y = (y + 1e-8).sqrt() # [nFcHW] Calc stddev over group.
+ y = y.mean(dim=[2,3,4]) # [nF] Take average over channels and pixels.
+ y = y.reshape(-1, F, 1, 1) # [nF11] Add missing dimensions.
+ y = y.repeat(G, 1, H, W) # [NFHW] Replicate over group and pixels.
+ x = torch.cat([x, y], dim=1) # [NCHW] Append to input as new channels.
+ return x
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class DiscriminatorEpilogue(torch.nn.Module):
+ def __init__(self,
+ in_channels, # Number of input channels.
+ cmap_dim, # Dimensionality of mapped conditioning label, 0 = no label.
+ resolution, # Resolution of this block.
+ img_channels, # Number of input color channels.
+ architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
+ mbstd_group_size = 4, # Group size for the minibatch standard deviation layer, None = entire minibatch.
+ mbstd_num_channels = 1, # Number of features for the minibatch standard deviation layer, 0 = disable.
+ activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc.
+ conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping.
+ ):
+ assert architecture in ['orig', 'skip', 'resnet']
+ super().__init__()
+ self.in_channels = in_channels
+ self.cmap_dim = cmap_dim
+ self.resolution = resolution
+ self.img_channels = img_channels
+ self.architecture = architecture
+
+ if architecture == 'skip':
+ self.fromrgb = Conv2dLayer(img_channels, in_channels, kernel_size=1, activation=activation)
+ self.mbstd = MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels) if mbstd_num_channels > 0 else None
+ self.conv = Conv2dLayer(in_channels + mbstd_num_channels, in_channels, kernel_size=3, activation=activation, conv_clamp=conv_clamp)
+ self.fc = FullyConnectedLayer(in_channels * (resolution ** 2), in_channels, activation=activation)
+ self.out = FullyConnectedLayer(in_channels, 1 if cmap_dim == 0 else cmap_dim)
+
+ def forward(self, x, img, cmap, force_fp32=False):
+ misc.assert_shape(x, [None, self.in_channels, self.resolution, self.resolution]) # [NCHW]
+ _ = force_fp32 # unused
+ dtype = torch.float32
+ memory_format = torch.contiguous_format
+
+ # FromRGB.
+ x = x.to(dtype=dtype, memory_format=memory_format)
+ if self.architecture == 'skip':
+ misc.assert_shape(img, [None, self.img_channels, self.resolution, self.resolution])
+ img = img.to(dtype=dtype, memory_format=memory_format)
+ x = x + self.fromrgb(img)
+
+ # Main layers.
+ if self.mbstd is not None:
+ x = self.mbstd(x)
+ x = self.conv(x)
+ x = self.fc(x.flatten(1))
+ x = self.out(x)
+
+ # Conditioning.
+ if self.cmap_dim > 0:
+ misc.assert_shape(cmap, [None, self.cmap_dim])
+ x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
+
+ assert x.dtype == dtype
+ return x
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class Discriminator(torch.nn.Module):
+ def __init__(self,
+ c_dim, # Conditioning label (C) dimensionality.
+ img_resolution, # Input resolution.
+ img_channels, # Number of input color channels.
+ architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
+ channel_base = 32768, # Overall multiplier for the number of channels.
+ channel_max = 512, # Maximum number of channels in any layer.
+ num_fp16_res = 0, # Use FP16 for the N highest resolutions.
+ conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping.
+ cmap_dim = None, # Dimensionality of mapped conditioning label, None = default.
+ block_kwargs = {}, # Arguments for DiscriminatorBlock.
+ mapping_kwargs = {}, # Arguments for MappingNetwork.
+ epilogue_kwargs = {}, # Arguments for DiscriminatorEpilogue.
+ ):
+ super().__init__()
+ self.c_dim = c_dim
+ self.img_resolution = img_resolution
+ self.img_resolution_log2 = int(np.log2(img_resolution))
+ self.img_channels = img_channels
+ self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
+ channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
+ fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
+
+ if cmap_dim is None:
+ cmap_dim = channels_dict[4]
+ if c_dim == 0:
+ cmap_dim = 0
+
+ common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp)
+ cur_layer_idx = 0
+ for res in self.block_resolutions:
+ in_channels = channels_dict[res] if res < img_resolution else 0
+ tmp_channels = channels_dict[res]
+ out_channels = channels_dict[res // 2]
+ use_fp16 = (res >= fp16_resolution)
+ block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
+ first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
+ setattr(self, f'b{res}', block)
+ cur_layer_idx += block.num_layers
+ if c_dim > 0:
+ self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
+ self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs)
+
+ def forward(self, img, c, **block_kwargs):
+ x = None
+ for res in self.block_resolutions:
+ block = getattr(self, f'b{res}')
+ x, img = block(x, img, **block_kwargs)
+
+ cmap = None
+ if self.c_dim > 0:
+ cmap = self.mapping(None, c)
+ x = self.b4(x, img, cmap)
+ return x
+
+#----------------------------------------------------------------------------
diff --git a/global_torch/visualizer.py b/global_torch/visualizer.py
new file mode 100644
index 0000000..8c4a1fb
--- /dev/null
+++ b/global_torch/visualizer.py
@@ -0,0 +1,605 @@
+# python 3.7
+"""Utility functions for visualizing results on html page."""
+
+import base64
+import os.path
+import cv2
+import numpy as np
+
+__all__ = [
+ 'get_grid_shape', 'get_blank_image', 'load_image', 'save_image',
+ 'resize_image', 'add_text_to_image', 'fuse_images', 'HtmlPageVisualizer',
+ 'VideoReader', 'VideoWriter', 'adjust_pixel_range'
+]
+
+
+def adjust_pixel_range(images, min_val=-1.0, max_val=1.0, channel_order='NCHW'):
+ """Adjusts the pixel range of the input images.
+
+ This function assumes the input array (image batch) is with shape [batch_size,
+ channel, height, width] if `channel_order = NCHW`, or with shape [batch_size,
+ height, width] if `channel_order = NHWC`. The returned images are with shape
+ [batch_size, height, width, channel] and pixel range [0, 255].
+
+ NOTE: The channel order of output images will remain the same as the input.
+
+ Args:
+ images: Input images to adjust pixel range.
+ min_val: Min value of the input images. (default: -1.0)
+ max_val: Max value of the input images. (default: 1.0)
+ channel_order: Channel order of the input array. (default: NCHW)
+
+ Returns:
+ The postprocessed images with dtype `numpy.uint8` and range [0, 255].
+
+ Raises:
+ ValueError: If the input `images` are not with type `numpy.ndarray` or the
+ shape is invalid according to `channel_order`.
+ """
+ if not isinstance(images, np.ndarray):
+ raise ValueError(f'Images should be with type `numpy.ndarray`!')
+
+ channel_order = channel_order.upper()
+ if channel_order not in ['NCHW', 'NHWC']:
+ raise ValueError(f'Invalid channel order `{channel_order}`!')
+
+ if images.ndim != 4:
+ raise ValueError(f'Input images are expected to be with shape `NCHW` or '
+ f'`NHWC`, but `{images.shape}` is received!')
+ if channel_order == 'NCHW' and images.shape[1] not in [1, 3]:
+ raise ValueError(f'Input images should have 1 or 3 channels under `NCHW` '
+ f'channel order!')
+ if channel_order == 'NHWC' and images.shape[3] not in [1, 3]:
+ raise ValueError(f'Input images should have 1 or 3 channels under `NHWC` '
+ f'channel order!')
+
+ images = images.astype(np.float32)
+ images = (images - min_val) * 255 / (max_val - min_val)
+ images = np.clip(images + 0.5, 0, 255).astype(np.uint8)
+ if channel_order == 'NCHW':
+ images = images.transpose(0, 2, 3, 1)
+
+ return images
+
+
+def get_grid_shape(size, row=0, col=0, is_portrait=False):
+ """Gets the shape of a grid based on the size.
+
+ This function makes greatest effort on making the output grid square if
+ neither `row` nor `col` is set. If `is_portrait` is set as `False`, the height
+ will always be equal to or smaller than the width. For example, if input
+ `size = 16`, output shape will be `(4, 4)`; if input `size = 15`, output shape
+ will be (3, 5). Otherwise, the height will always be equal to or larger than
+ the width.
+
+ Args:
+ size: Size (height * width) of the target grid.
+ is_portrait: Whether to return a portrait size of a landscape size.
+ (default: False)
+
+ Returns:
+ A two-element tuple, representing height and width respectively.
+ """
+ assert isinstance(size, int)
+ assert isinstance(row, int)
+ assert isinstance(col, int)
+ if size == 0:
+ return (0, 0)
+
+ if row > 0 and col > 0 and row * col != size:
+ row = 0
+ col = 0
+
+ if row > 0 and size % row == 0:
+ return (row, size // row)
+ if col > 0 and size % col == 0:
+ return (size // col, col)
+
+ row = int(np.sqrt(size))
+ while row > 0:
+ if size % row == 0:
+ col = size // row
+ break
+ row = row - 1
+
+ return (col, row) if is_portrait else (row, col)
+
+
+def get_blank_image(height, width, channels=3, is_black=True):
+ """Gets a blank image, either white of black.
+
+ NOTE: This function will always return an image with `RGB` channel order for
+ color image and pixel range [0, 255].
+
+ Args:
+ height: Height of the returned image.
+ width: Width of the returned image.
+ channels: Number of channels. (default: 3)
+ is_black: Whether to return a black image or white image. (default: True)
+ """
+ shape = (height, width, channels)
+ if is_black:
+ return np.zeros(shape, dtype=np.uint8)
+ return np.ones(shape, dtype=np.uint8) * 255
+
+
+def load_image(path):
+ """Loads an image from disk.
+
+ NOTE: This function will always return an image with `RGB` channel order for
+ color image and pixel range [0, 255].
+
+ Args:
+ path: Path to load the image from.
+
+ Returns:
+ An image with dtype `np.ndarray` or `None` if input `path` does not exist.
+ """
+ if not os.path.isfile(path):
+ return None
+
+ image = cv2.imread(path)
+ return image[:, :, ::-1]
+
+
+def save_image(path, image):
+ """Saves an image to disk.
+
+ NOTE: The input image (if colorful) is assumed to be with `RGB` channel order
+ and pixel range [0, 255].
+
+ Args:
+ path: Path to save the image to.
+ image: Image to save.
+ """
+ if image is None:
+ return
+
+ assert len(image.shape) == 3 and image.shape[2] in [1, 3]
+ cv2.imwrite(path, image[:, :, ::-1])
+
+
+def resize_image(image, *args, **kwargs):
+ """Resizes image.
+
+ This is a wrap of `cv2.resize()`.
+
+ NOTE: THe channel order of the input image will not be changed.
+
+ Args:
+ image: Image to resize.
+ """
+ if image is None:
+ return None
+
+ assert image.ndim == 3 and image.shape[2] in [1, 3]
+ image = cv2.resize(image, *args, **kwargs)
+ if image.ndim == 2:
+ return image[:, :, np.newaxis]
+ return image
+
+
+def add_text_to_image(image,
+ text='',
+ position=None,
+ font=cv2.FONT_HERSHEY_TRIPLEX,
+ font_size=1.0,
+ line_type=cv2.LINE_8,
+ line_width=1,
+ color=(255, 255, 255)):
+ """Overlays text on given image.
+
+ NOTE: The input image is assumed to be with `RGB` channel order.
+
+ Args:
+ image: The image to overlay text on.
+ text: Text content to overlay on the image. (default: '')
+ position: Target position (bottom-left corner) to add text. If not set,
+ center of the image will be used by default. (default: None)
+ font: Font of the text added. (default: cv2.FONT_HERSHEY_TRIPLEX)
+ font_size: Font size of the text added. (default: 1.0)
+ line_type: Line type used to depict the text. (default: cv2.LINE_8)
+ line_width: Line width used to depict the text. (default: 1)
+ color: Color of the text added in `RGB` channel order. (default:
+ (255, 255, 255))
+
+ Returns:
+ An image with target text overlayed on.
+ """
+ if image is None or not text:
+ return image
+
+ cv2.putText(img=image,
+ text=text,
+ org=position,
+ fontFace=font,
+ fontScale=font_size,
+ color=color,
+ thickness=line_width,
+ lineType=line_type,
+ bottomLeftOrigin=False)
+
+ return image
+
+
+def fuse_images(images,
+ image_size=None,
+ row=0,
+ col=0,
+ is_row_major=True,
+ is_portrait=False,
+ row_spacing=0,
+ col_spacing=0,
+ border_left=0,
+ border_right=0,
+ border_top=0,
+ border_bottom=0,
+ black_background=True):
+ """Fuses a collection of images into an entire image.
+
+ Args:
+ images: A collection of images to fuse. Should be with shape [num, height,
+ width, channels].
+ image_size: Int or two-element tuple. This field is used to resize the image
+ before fusing. `None` disables resizing. (default: None)
+ row: Number of rows used for image fusion. If not set, this field will be
+ automatically assigned based on `col` and total number of images.
+ (default: None)
+ col: Number of columns used for image fusion. If not set, this field will be
+ automatically assigned based on `row` and total number of images.
+ (default: None)
+ is_row_major: Whether the input images should be arranged row-major or
+ column-major. (default: True)
+ is_portrait: Only active when both `row` and `col` should be assigned
+ automatically. (default: False)
+ row_spacing: Space between rows. (default: 0)
+ col_spacing: Space between columns. (default: 0)
+ border_left: Width of left border. (default: 0)
+ border_right: Width of right border. (default: 0)
+ border_top: Width of top border. (default: 0)
+ border_bottom: Width of bottom border. (default: 0)
+
+ Returns:
+ The fused image.
+
+ Raises:
+ ValueError: If the input `images` is not with shape [num, height, width,
+ width].
+ """
+ if images is None:
+ return images
+
+ if not images.ndim == 4:
+ raise ValueError(f'Input `images` should be with shape [num, height, '
+ f'width, channels], but {images.shape} is received!')
+
+ num, image_height, image_width, channels = images.shape
+ if image_size is not None:
+ if isinstance(image_size, int):
+ image_size = (image_size, image_size)
+ assert isinstance(image_size, (list, tuple)) and len(image_size) == 2
+ width, height = image_size
+ else:
+ height, width = image_height, image_width
+ row, col = get_grid_shape(num, row=row, col=col, is_portrait=is_portrait)
+ fused_height = (
+ height * row + row_spacing * (row - 1) + border_top + border_bottom)
+ fused_width = (
+ width * col + col_spacing * (col - 1) + border_left + border_right)
+ fused_image = get_blank_image(
+ fused_height, fused_width, channels=channels, is_black=black_background)
+ images = images.reshape(row, col, image_height, image_width, channels)
+ if not is_row_major:
+ images = images.transpose(1, 0, 2, 3, 4)
+
+ for i in range(row):
+ y = border_top + i * (height + row_spacing)
+ for j in range(col):
+ x = border_left + j * (width + col_spacing)
+ if image_size is not None:
+ image = cv2.resize(images[i, j], image_size)
+ else:
+ image = images[i, j]
+ fused_image[y:y + height, x:x + width] = image
+
+ return fused_image
+
+
+def get_sortable_html_header(column_name_list, sort_by_ascending=False):
+ """Gets header for sortable html page.
+
+ Basically, the html page contains a sortable table, where user can sort the
+ rows by a particular column by clicking the column head.
+
+ Example:
+
+ column_name_list = [name_1, name_2, name_3]
+ header = get_sortable_html_header(column_name_list)
+ footer = get_sortable_html_footer()
+ sortable_table = ...
+ html_page = header + sortable_table + footer
+
+ Args:
+ column_name_list: List of column header names.
+ sort_by_ascending: Default sorting order. If set as `True`, the html page
+ will be sorted by ascending order when the header is clicked for the first
+ time.
+
+ Returns:
+ A string, which represents for the header for a sortable html page.
+ """
+ header = '\n'.join([
+ '',
+ '',
+ '',
+ '',
+ '',
+ '',
+ '',
+ '',
+ '',
+ '',
+ '',
+ '',
+ '',
+ ''])
+ for idx, column_name in enumerate(column_name_list):
+ header += f' {column_name} | \n'
+ header += '
\n'
+ header += '\n'
+ header += '\n'
+
+ return header
+
+
+def get_sortable_html_footer():
+ """Gets footer for sortable html page.
+
+ Check function `get_sortable_html_header()` for more details.
+ """
+ return '\n
\n\n\n\n'
+
+
+def encode_image_to_html_str(image, image_size=None):
+ """Encodes an image to html language.
+
+ Args:
+ image: The input image to encode. Should be with `RGB` channel order.
+ image_size: Int or two-element tuple. This field is used to resize the image
+ before encoding. `None` disables resizing. (default: None)
+
+ Returns:
+ A string which represents the encoded image.
+ """
+ if image is None:
+ return ''
+
+ assert len(image.shape) == 3 and image.shape[2] in [1, 3]
+
+ # Change channel order to `BGR`, which is opencv-friendly.
+ image = image[:, :, ::-1]
+
+ # Resize the image if needed.
+ if image_size is not None:
+ if isinstance(image_size, int):
+ image_size = (image_size, image_size)
+ assert isinstance(image_size, (list, tuple)) and len(image_size) == 2
+ image = cv2.resize(image, image_size)
+
+ # Encode the image to html-format string.
+ encoded_image = cv2.imencode(".jpg", image)[1].tostring()
+ encoded_image_base64 = base64.b64encode(encoded_image).decode('utf-8')
+ html_str = f'
'
+
+ return html_str
+
+
+class HtmlPageVisualizer(object):
+ """Defines the html page visualizer.
+
+ This class can be used to visualize image results as html page. Basically, it
+ is based on an html-format sorted table with helper functions
+ `get_sortable_html_header()`, `get_sortable_html_footer()`, and
+ `encode_image_to_html_str()`. To simplify the usage, specifying the following
+ fields is enough to create a visualization page:
+
+ (1) num_rows: Number of rows of the table (header-row exclusive).
+ (2) num_cols: Number of columns of the table.
+ (3) header contents (optional): Title of each column.
+
+ NOTE: `grid_size` can be used to assign `num_rows` and `num_cols`
+ automatically.
+
+ Example:
+
+ html = HtmlPageVisualizer(num_rows, num_cols)
+ html.set_headers([...])
+ for i in range(num_rows):
+ for j in range(num_cols):
+ html.set_cell(i, j, text=..., image=...)
+ html.save('visualize.html')
+ """
+
+ def __init__(self,
+ num_rows=0,
+ num_cols=0,
+ grid_size=0,
+ is_portrait=False,
+ viz_size=None):
+ if grid_size > 0:
+ num_rows, num_cols = get_grid_shape(
+ grid_size, row=num_rows, col=num_cols, is_portrait=is_portrait)
+ assert num_rows > 0 and num_cols > 0
+
+ self.num_rows = num_rows
+ self.num_cols = num_cols
+ self.viz_size = viz_size
+ self.headers = ['' for _ in range(self.num_cols)]
+ self.cells = [[{
+ 'text': '',
+ 'image': '',
+ } for _ in range(self.num_cols)] for _ in range(self.num_rows)]
+
+ def set_header(self, column_idx, content):
+ """Sets the content of a particular header by column index."""
+ self.headers[column_idx] = content
+
+ def set_headers(self, contents):
+ """Sets the contents of all headers."""
+ if isinstance(contents, str):
+ contents = [contents]
+ assert isinstance(contents, (list, tuple))
+ assert len(contents) == self.num_cols
+ for column_idx, content in enumerate(contents):
+ self.set_header(column_idx, content)
+
+ def set_cell(self, row_idx, column_idx, text='', image=None):
+ """Sets the content of a particular cell.
+
+ Basically, a cell contains some text as well as an image. Both text and
+ image can be empty.
+
+ Args:
+ row_idx: Row index of the cell to edit.
+ column_idx: Column index of the cell to edit.
+ text: Text to add into the target cell.
+ image: Image to show in the target cell. Should be with `RGB` channel
+ order.
+ """
+ self.cells[row_idx][column_idx]['text'] = text
+ self.cells[row_idx][column_idx]['image'] = encode_image_to_html_str(
+ image, self.viz_size)
+
+ def save(self, save_path):
+ """Saves the html page."""
+ html = ''
+ for i in range(self.num_rows):
+ html += f'\n'
+ for j in range(self.num_cols):
+ text = self.cells[i][j]['text']
+ image = self.cells[i][j]['image']
+ if text:
+ html += f' {text}
{image} | \n'
+ else:
+ html += f' {image} | \n'
+ html += f'
\n'
+
+ header = get_sortable_html_header(self.headers)
+ footer = get_sortable_html_footer()
+
+ with open(save_path, 'w') as f:
+ f.write(header + html + footer)
+
+
+class VideoReader(object):
+ """Defines the video reader.
+
+ This class can be used to read frames from a given video.
+ """
+
+ def __init__(self, path):
+ """Initializes the video reader by loading the video from disk."""
+ if not os.path.isfile(path):
+ raise ValueError(f'Video `{path}` does not exist!')
+
+ self.path = path
+ self.video = cv2.VideoCapture(path)
+ assert self.video.isOpened()
+ self.position = 0
+
+ self.length = int(self.video.get(cv2.CAP_PROP_FRAME_COUNT))
+ self.frame_height = int(self.video.get(cv2.CAP_PROP_FRAME_HEIGHT))
+ self.frame_width = int(self.video.get(cv2.CAP_PROP_FRAME_WIDTH))
+ self.fps = self.video.get(cv2.CAP_PROP_FPS)
+
+ def __del__(self):
+ """Releases the opened video."""
+ self.video.release()
+
+ def read(self, position=None):
+ """Reads a certain frame.
+
+ NOTE: The returned frame is assumed to be with `RGB` channel order.
+
+ Args:
+ position: Optional. If set, the reader will read frames from the exact
+ position. Otherwise, the reader will read next frames. (default: None)
+ """
+ if position is not None and position < self.length:
+ self.video.set(cv2.CAP_PROP_POS_FRAMES, position)
+ self.position = position
+
+ success, frame = self.video.read()
+ self.position = self.position + 1
+
+ return frame[:, :, ::-1] if success else None
+
+
+class VideoWriter(object):
+ """Defines the video writer.
+
+ This class can be used to create a video.
+
+ NOTE: `.avi` and `DIVX` is the most recommended codec format since it does not
+ rely on other dependencies.
+ """
+
+ def __init__(self, path, frame_height, frame_width, fps=24, codec='DIVX'):
+ """Creates the video writer."""
+ self.path = path
+ self.frame_height = frame_height
+ self.frame_width = frame_width
+ self.fps = fps
+ self.codec = codec
+
+ self.video = cv2.VideoWriter(filename=path,
+ fourcc=cv2.VideoWriter_fourcc(*codec),
+ fps=fps,
+ frameSize=(frame_width, frame_height))
+
+ def __del__(self):
+ """Releases the opened video."""
+ self.video.release()
+
+ def write(self, frame):
+ """Writes a target frame.
+
+ NOTE: The input frame is assumed to be with `RGB` channel order.
+ """
+ self.video.write(frame[:, :, ::-1])
diff --git a/latents_test/example_celebs.pt b/latents_test/example_celebs.pt
new file mode 100644
index 0000000..bda9fb5
Binary files /dev/null and b/latents_test/example_celebs.pt differ
diff --git a/licenses/LICENSE-CLIP b/licenses/LICENSE-CLIP
new file mode 100644
index 0000000..c123b69
--- /dev/null
+++ b/licenses/LICENSE-CLIP
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2021 OpenAI
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/licenses/LICENSE-stylegan2-pytorch b/licenses/LICENSE-stylegan2-pytorch
new file mode 100644
index 0000000..81da3fc
--- /dev/null
+++ b/licenses/LICENSE-stylegan2-pytorch
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2019 Kim Seonghyeon
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
\ No newline at end of file
diff --git a/models/__init__.py b/models/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/models/facial_recognition/__init__.py b/models/facial_recognition/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/models/facial_recognition/helpers.py b/models/facial_recognition/helpers.py
new file mode 100644
index 0000000..b51fdf9
--- /dev/null
+++ b/models/facial_recognition/helpers.py
@@ -0,0 +1,119 @@
+from collections import namedtuple
+import torch
+from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module
+
+"""
+ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
+"""
+
+
+class Flatten(Module):
+ def forward(self, input):
+ return input.view(input.size(0), -1)
+
+
+def l2_norm(input, axis=1):
+ norm = torch.norm(input, 2, axis, True)
+ output = torch.div(input, norm)
+ return output
+
+
+class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
+ """ A named tuple describing a ResNet block. """
+
+
+def get_block(in_channel, depth, num_units, stride=2):
+ return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
+
+
+def get_blocks(num_layers):
+ if num_layers == 50:
+ blocks = [
+ get_block(in_channel=64, depth=64, num_units=3),
+ get_block(in_channel=64, depth=128, num_units=4),
+ get_block(in_channel=128, depth=256, num_units=14),
+ get_block(in_channel=256, depth=512, num_units=3)
+ ]
+ elif num_layers == 100:
+ blocks = [
+ get_block(in_channel=64, depth=64, num_units=3),
+ get_block(in_channel=64, depth=128, num_units=13),
+ get_block(in_channel=128, depth=256, num_units=30),
+ get_block(in_channel=256, depth=512, num_units=3)
+ ]
+ elif num_layers == 152:
+ blocks = [
+ get_block(in_channel=64, depth=64, num_units=3),
+ get_block(in_channel=64, depth=128, num_units=8),
+ get_block(in_channel=128, depth=256, num_units=36),
+ get_block(in_channel=256, depth=512, num_units=3)
+ ]
+ else:
+ raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
+ return blocks
+
+
+class SEModule(Module):
+ def __init__(self, channels, reduction):
+ super(SEModule, self).__init__()
+ self.avg_pool = AdaptiveAvgPool2d(1)
+ self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
+ self.relu = ReLU(inplace=True)
+ self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
+ self.sigmoid = Sigmoid()
+
+ def forward(self, x):
+ module_input = x
+ x = self.avg_pool(x)
+ x = self.fc1(x)
+ x = self.relu(x)
+ x = self.fc2(x)
+ x = self.sigmoid(x)
+ return module_input * x
+
+
+class bottleneck_IR(Module):
+ def __init__(self, in_channel, depth, stride):
+ super(bottleneck_IR, self).__init__()
+ if in_channel == depth:
+ self.shortcut_layer = MaxPool2d(1, stride)
+ else:
+ self.shortcut_layer = Sequential(
+ Conv2d(in_channel, depth, (1, 1), stride, bias=False),
+ BatchNorm2d(depth)
+ )
+ self.res_layer = Sequential(
+ BatchNorm2d(in_channel),
+ Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
+ Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth)
+ )
+
+ def forward(self, x):
+ shortcut = self.shortcut_layer(x)
+ res = self.res_layer(x)
+ return res + shortcut
+
+
+class bottleneck_IR_SE(Module):
+ def __init__(self, in_channel, depth, stride):
+ super(bottleneck_IR_SE, self).__init__()
+ if in_channel == depth:
+ self.shortcut_layer = MaxPool2d(1, stride)
+ else:
+ self.shortcut_layer = Sequential(
+ Conv2d(in_channel, depth, (1, 1), stride, bias=False),
+ BatchNorm2d(depth)
+ )
+ self.res_layer = Sequential(
+ BatchNorm2d(in_channel),
+ Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
+ PReLU(depth),
+ Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
+ BatchNorm2d(depth),
+ SEModule(depth, 16)
+ )
+
+ def forward(self, x):
+ shortcut = self.shortcut_layer(x)
+ res = self.res_layer(x)
+ return res + shortcut
diff --git a/models/facial_recognition/model_irse.py b/models/facial_recognition/model_irse.py
new file mode 100644
index 0000000..3fcd985
--- /dev/null
+++ b/models/facial_recognition/model_irse.py
@@ -0,0 +1,86 @@
+import sys
+sys.path.append('/home/ly/StyleCLIP-main/models/facial_recognition')
+from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Dropout, Sequential, Module
+from helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE, l2_norm
+
+"""
+Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
+"""
+
+
+class Backbone(Module):
+ def __init__(self, input_size, num_layers, mode='ir', drop_ratio=0.4, affine=True):
+ super(Backbone, self).__init__()
+ assert input_size in [112, 224], "input_size should be 112 or 224"
+ assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152"
+ assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se"
+ blocks = get_blocks(num_layers)
+ if mode == 'ir':
+ unit_module = bottleneck_IR
+ elif mode == 'ir_se':
+ unit_module = bottleneck_IR_SE
+ self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
+ BatchNorm2d(64),
+ PReLU(64))
+ if input_size == 112:
+ self.output_layer = Sequential(BatchNorm2d(512),
+ Dropout(drop_ratio),
+ Flatten(),
+ Linear(512 * 7 * 7, 512),
+ BatchNorm1d(512, affine=affine))
+ else:
+ self.output_layer = Sequential(BatchNorm2d(512),
+ Dropout(drop_ratio),
+ Flatten(),
+ Linear(512 * 14 * 14, 512),
+ BatchNorm1d(512, affine=affine))
+
+ modules = []
+ for block in blocks:
+ for bottleneck in block:
+ modules.append(unit_module(bottleneck.in_channel,
+ bottleneck.depth,
+ bottleneck.stride))
+ self.body = Sequential(*modules)
+
+ def forward(self, x):
+ x = self.input_layer(x)
+ x = self.body(x)
+ x = self.output_layer(x)
+ return l2_norm(x)
+
+
+def IR_50(input_size):
+ """Constructs a ir-50 model."""
+ model = Backbone(input_size, num_layers=50, mode='ir', drop_ratio=0.4, affine=False)
+ return model
+
+
+def IR_101(input_size):
+ """Constructs a ir-101 model."""
+ model = Backbone(input_size, num_layers=100, mode='ir', drop_ratio=0.4, affine=False)
+ return model
+
+
+def IR_152(input_size):
+ """Constructs a ir-152 model."""
+ model = Backbone(input_size, num_layers=152, mode='ir', drop_ratio=0.4, affine=False)
+ return model
+
+
+def IR_SE_50(input_size):
+ """Constructs a ir_se-50 model."""
+ model = Backbone(input_size, num_layers=50, mode='ir_se', drop_ratio=0.4, affine=False)
+ return model
+
+
+def IR_SE_101(input_size):
+ """Constructs a ir_se-101 model."""
+ model = Backbone(input_size, num_layers=100, mode='ir_se', drop_ratio=0.4, affine=False)
+ return model
+
+
+def IR_SE_152(input_size):
+ """Constructs a ir_se-152 model."""
+ model = Backbone(input_size, num_layers=152, mode='ir_se', drop_ratio=0.4, affine=False)
+ return model
diff --git a/models/stylegan2/__init__.py b/models/stylegan2/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/models/stylegan2/model.py b/models/stylegan2/model.py
new file mode 100644
index 0000000..2a461d2
--- /dev/null
+++ b/models/stylegan2/model.py
@@ -0,0 +1,715 @@
+import math
+import random
+
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from models.stylegan2.op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
+
+
+class PixelNorm(nn.Module):
+ def __init__(self):
+ super().__init__()
+ #normalizes了特征向量的每个元素到单位长度附近,阻止了信号幅度signal magnitudes导致的在训练过程中逐步失控的风险。
+ def forward(self, input):
+ return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
+
+
+def make_kernel(k):
+ k = torch.tensor(k, dtype=torch.float32)
+
+ if k.ndim == 1:
+ k = k[None, :] * k[:, None]
+
+ k /= k.sum()
+
+ return k
+
+
+class Upsample(nn.Module):
+ def __init__(self, kernel, factor=2):
+ super().__init__()
+
+ self.factor = factor
+ kernel = make_kernel(kernel) * (factor ** 2)
+ self.register_buffer('kernel', kernel)
+
+ p = kernel.shape[0] - factor
+
+ pad0 = (p + 1) // 2 + factor - 1
+ pad1 = p // 2
+
+ self.pad = (pad0, pad1)
+
+ def forward(self, input):
+ out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
+
+ return out
+
+
+class Downsample(nn.Module):
+ def __init__(self, kernel, factor=2):
+ super().__init__()
+
+ self.factor = factor
+ kernel = make_kernel(kernel)
+ self.register_buffer('kernel', kernel)
+
+ p = kernel.shape[0] - factor
+
+ pad0 = (p + 1) // 2
+ pad1 = p // 2
+
+ self.pad = (pad0, pad1)
+
+ def forward(self, input):
+ out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
+
+ return out
+
+
+class Blur(nn.Module):
+ def __init__(self, kernel, pad, upsample_factor=1):
+ super().__init__()
+
+ kernel = make_kernel(kernel)
+
+ if upsample_factor > 1:
+ kernel = kernel * (upsample_factor ** 2)
+
+ self.register_buffer('kernel', kernel)
+
+ self.pad = pad
+
+ def forward(self, input):
+ out = upfirdn2d(input, self.kernel, pad=self.pad)
+
+ return out
+
+
+class EqualConv2d(nn.Module):
+ def __init__(
+ self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
+ ):
+ super().__init__()
+
+ self.weight = nn.Parameter(
+ torch.randn(out_channel, in_channel, kernel_size, kernel_size)
+ )
+ self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
+
+ self.stride = stride
+ self.padding = padding
+
+ if bias:
+ self.bias = nn.Parameter(torch.zeros(out_channel))
+
+ else:
+ self.bias = None
+
+ def forward(self, input):
+ out = F.conv2d(
+ input,
+ self.weight * self.scale,
+ bias=self.bias,
+ stride=self.stride,
+ padding=self.padding,
+ )
+
+ return out
+
+ def __repr__(self):
+ return (
+ f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
+ f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
+ )
+
+#定义了一个线性激活层
+class EqualLinear(nn.Module):
+ def __init__(
+ self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
+ ):
+ super().__init__()
+
+ self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
+
+ if bias:
+ self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
+
+ else:
+ self.bias = None
+
+ self.activation = activation
+
+ self.scale = (1 / math.sqrt(in_dim)) * lr_mul
+ self.lr_mul = lr_mul
+
+ def forward(self, input):
+
+ if self.activation:
+ out = F.linear(input, self.weight * self.scale)
+ out = fused_leaky_relu(out, self.bias * self.lr_mul)
+
+ else:
+ out = F.linear(
+ input, self.weight * self.scale, bias=self.bias * self.lr_mul
+ )
+
+ return out
+
+ def __repr__(self):
+ return (
+ f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
+ )
+
+
+class ScaledLeakyReLU(nn.Module):
+ def __init__(self, negative_slope=0.2):
+ super().__init__()
+
+ self.negative_slope = negative_slope
+
+ def forward(self, input):
+ out = F.leaky_relu(input, negative_slope=self.negative_slope)
+
+ return out * math.sqrt(2)
+
+
+class ModulatedConv2d(nn.Module):
+ def __init__(
+ self,
+ in_channel,
+ out_channel,
+ kernel_size,
+ style_dim,
+ demodulate=True,
+ upsample=False,
+ #给卷积核乘以放缩参数
+ downsample=False,
+ blur_kernel=[1, 3, 3, 1],
+ ):
+ super().__init__()
+
+ self.eps = 1e-8
+ self.kernel_size = kernel_size
+ self.in_channel = in_channel
+ self.out_channel = out_channel
+ self.upsample = upsample
+ self.downsample = downsample
+
+ if upsample:
+ factor = 2
+ p = (len(blur_kernel) - factor) - (kernel_size - 1)
+ pad0 = (p + 1) // 2 + factor - 1
+ pad1 = p // 2 + 1
+
+ self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
+
+ if downsample:
+ factor = 2
+ p = (len(blur_kernel) - factor) + (kernel_size - 1)
+ pad0 = (p + 1) // 2
+ pad1 = p // 2
+
+ self.blur = Blur(blur_kernel, pad=(pad0, pad1))
+
+ fan_in = in_channel * kernel_size ** 2
+ self.scale = 1 / math.sqrt(fan_in)
+ self.padding = kernel_size // 2
+
+ self.weight = nn.Parameter(
+ torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
+ )
+
+ self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
+
+ self.demodulate = demodulate
+
+ def __repr__(self):
+ #返回了模型的各个参数的字符串
+ return (
+ f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
+ f'upsample={self.upsample}, downsample={self.downsample})'
+ )
+
+ def forward(self, input, style, input_is_stylespace=False):
+ batch, in_channel, height, width = input.shape
+
+ if not input_is_stylespace:
+ style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
+ weight = self.scale * self.weight * style
+
+ #对权重进行解调
+ if self.demodulate:
+ #类似标准差计算,平方求和再反平方,目的是计算每个权重向量的解调因子
+ demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
+ #demod是一个解调因子矩阵,通过demod.view()将其形状调整为与权重矩阵相同的形状,以便进行逐元素的相乘操作。
+ weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
+
+ weight = weight.view(
+ batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
+ )
+
+ if self.upsample:
+ input = input.view(1, batch * in_channel, height, width)
+ weight = weight.view(
+ batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
+ )
+ weight = weight.transpose(1, 2).reshape(
+ batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
+ )
+ out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
+ _, _, height, width = out.shape
+ out = out.view(batch, self.out_channel, height, width)
+ out = self.blur(out)
+
+ elif self.downsample:
+ input = self.blur(input)
+ _, _, height, width = input.shape
+ input = input.view(1, batch * in_channel, height, width)
+ out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
+ _, _, height, width = out.shape
+ out = out.view(batch, self.out_channel, height, width)
+
+ else:
+ input = input.view(1, batch * in_channel, height, width)
+ out = F.conv2d(input, weight, padding=self.padding, groups=batch)
+ _, _, height, width = out.shape
+ out = out.view(batch, self.out_channel, height, width)
+
+ return out, style
+
+# 用噪声 ( noise ) 来影响头发丝、皱纹、肤色等细节部分。
+class NoiseInjection(nn.Module):
+ def __init__(self):
+ super().__init__()
+
+ self.weight = nn.Parameter(torch.zeros(1))
+
+ def forward(self, image, noise=None):
+ if noise is None:
+ batch, _, height, width = image.shape
+ noise = image.new_empty(batch, 1, height, width).normal_()
+
+ return image + self.weight * noise
+
+
+class ConstantInput(nn.Module):
+ def __init__(self, channel, size=4):
+ super().__init__()
+
+ self.input = nn.Parameter(torch.randn(1, channel, size, size))
+
+ def forward(self, input):
+ batch = input.shape[0]
+ out = self.input.repeat(batch, 1, 1, 1)
+
+ return out
+
+
+class StyledConv(nn.Module):
+ def __init__(
+ self,
+ in_channel,
+ out_channel,
+ kernel_size,
+ style_dim,
+ upsample=False,
+ blur_kernel=[1, 3, 3, 1],
+ demodulate=True,
+ ):
+ super().__init__()
+
+ self.conv = ModulatedConv2d(
+ in_channel,
+ out_channel,
+ kernel_size,
+ style_dim,
+ upsample=upsample,
+ blur_kernel=blur_kernel,
+ demodulate=demodulate,
+ )
+
+ self.noise = NoiseInjection()
+ # self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
+ # self.activate = ScaledLeakyReLU(0.2)
+ self.activate = FusedLeakyReLU(out_channel)
+
+ def forward(self, input, style, noise=None, input_is_stylespace=False):
+ out, style = self.conv(input, style, input_is_stylespace=input_is_stylespace)
+ out = self.noise(out, noise=noise)
+ # out = out + self.bias
+ out = self.activate(out)
+
+ return out, style
+
+
+class ToRGB(nn.Module):
+ def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
+ super().__init__()
+
+ if upsample:
+ self.upsample = Upsample(blur_kernel)
+
+ #ToRGB层不进行demodulate处理
+ self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
+ self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
+
+ def forward(self, input, style, skip=None, input_is_stylespace=False):
+ out, style = self.conv(input, style, input_is_stylespace=input_is_stylespace)
+ out = out + self.bias
+
+ if skip is not None:
+ skip = self.upsample(skip)
+
+ out = out + skip
+
+ return out, style
+
+
+class Generator(nn.Module):
+ def __init__(
+ self,
+ size,
+ style_dim,
+ n_mlp,
+ channel_multiplier=2,
+ blur_kernel=[1, 3, 3, 1],
+ lr_mlp=0.01,
+ ):
+ super().__init__()
+
+ self.size = size
+
+ self.style_dim = style_dim
+
+ layers = [PixelNorm()]
+
+ for i in range(n_mlp):
+ layers.append(
+ EqualLinear(
+ style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu'
+ )
+ )
+
+ self.style = nn.Sequential(*layers)
+
+ self.channels = {
+ 4: 512,
+ 8: 512,
+ 16: 512,
+ 32: 512,
+ 64: 256 * channel_multiplier,
+ 128: 128 * channel_multiplier,
+ 256: 64 * channel_multiplier,
+ 512: 32 * channel_multiplier,
+ 1024: 16 * channel_multiplier,
+ }
+
+ self.input = ConstantInput(self.channels[4])
+ self.conv1 = StyledConv(
+ self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
+ )
+ self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
+
+ self.log_size = int(math.log(size, 2)) #log(1024,2) = 10
+ self.num_layers = (self.log_size - 2) * 2 + 1
+
+ self.convs = nn.ModuleList()
+ self.upsamples = nn.ModuleList()
+ self.to_rgbs = nn.ModuleList()
+ self.noises = nn.Module()
+
+ in_channel = self.channels[4]
+
+ for layer_idx in range(self.num_layers):
+ res = (layer_idx + 5) // 2
+ shape = [1, 1, 2 ** res, 2 ** res]
+ self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape))
+
+ for i in range(3, self.log_size + 1):
+ out_channel = self.channels[2 ** i]
+
+ self.convs.append(
+ StyledConv(
+ in_channel,
+ out_channel,
+ 3,
+ style_dim,
+ upsample=True,
+ blur_kernel=blur_kernel,
+ )
+ )
+
+ self.convs.append(
+ StyledConv(
+ out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
+ )
+ )
+
+ self.to_rgbs.append(ToRGB(out_channel, style_dim))
+
+ in_channel = out_channel
+ # w+ repeat的倍数,例如1024计算为18,实际上就是上采样层1+8*2+1,因为第一层只需要一个style最后又多了一层to_rgb用了style,其中8个block每个上采样层之前均要加入两次style
+ self.n_latent = self.log_size * 2 - 2
+
+
+ def make_noise(self):
+ device = self.input.input.device
+
+ noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
+
+ for i in range(3, self.log_size + 1):
+ for _ in range(2):
+ noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
+
+ return noises
+
+ def mean_latent(self, n_latent):
+ latent_in = torch.randn(
+ n_latent, self.style_dim, device=self.input.input.device
+ )
+ latent = self.style(latent_in).mean(0, keepdim=True)
+
+ return latent
+
+ def get_latent(self, input):
+ return self.style(input)
+
+ def forward(
+ self,
+ styles,
+ return_latents=False,
+ inject_index=None,
+ truncation=1,
+ truncation_latent=None,
+ input_is_latent=False,
+ input_is_stylespace=False,
+ noise=None,
+ randomize_noise=True,
+ ):
+ if not input_is_latent and not input_is_stylespace:
+ styles = [self.style(s) for s in styles]
+
+ if noise is None:
+ if randomize_noise:
+ noise = [None] * self.num_layers
+ else:
+ noise = [
+ getattr(self.noises, f'noise_{i}') for i in range(self.num_layers)
+ ]
+
+ if truncation < 1 and not input_is_stylespace:
+ style_t = []
+
+ for style in styles:
+ style_t.append(
+ truncation_latent + truncation * (style - truncation_latent)
+ )
+
+ styles = style_t
+
+ if input_is_stylespace:
+ latent = styles[0]
+ elif len(styles) < 2:
+ inject_index = self.n_latent
+
+ if styles[0].ndim < 3:
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
+
+ else:
+ latent = styles[0]
+
+ else:
+ if inject_index is None:
+ inject_index = random.randint(1, self.n_latent - 1)
+
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
+
+ latent = torch.cat([latent, latent2], 1)
+
+
+ style_vector = []
+
+ if not input_is_stylespace:
+ out = self.input(latent)
+ # print('laten:',latent.shape) # torch.Size([1, 18, 512])
+ out, out_style = self.conv1(out, latent[:, 0], noise=noise[0])
+ style_vector.append(out_style)
+
+ skip, out_style = self.to_rgb1(out, latent[:, 1])
+ style_vector.append(out_style)
+
+ i = 1
+ else:
+ out = self.input(latent[0])
+ out, out_style = self.conv1(out, latent[0], noise=noise[0], input_is_stylespace=input_is_stylespace)
+ style_vector.append(out_style)
+
+ skip, out_style = self.to_rgb1(out, latent[1], input_is_stylespace=input_is_stylespace)
+ style_vector.append(out_style)
+
+ i = 2
+
+ for conv1, conv2, noise1, noise2, to_rgb in zip(
+ self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
+ ):
+ if not input_is_stylespace:
+ out, out_style1 = conv1(out, latent[:, i], noise=noise1)
+ out, out_style2 = conv2(out, latent[:, i + 1], noise=noise2)
+ skip, rgb_style = to_rgb(out, latent[:, i + 2], skip)
+
+ style_vector.extend([out_style1, out_style2, rgb_style])
+
+ i += 2
+ else:
+ out, out_style1 = conv1(out, latent[i], noise=noise1, input_is_stylespace=input_is_stylespace)
+ out, out_style2 = conv2(out, latent[i + 1], noise=noise2, input_is_stylespace=input_is_stylespace)
+ skip, rgb_style = to_rgb(out, latent[i + 2], skip, input_is_stylespace=input_is_stylespace)
+
+ style_vector.extend([out_style1, out_style2, rgb_style])
+
+ i += 3
+
+ image = skip
+
+ if return_latents:
+ return image, latent, style_vector
+
+ else:
+ return image, None
+
+
+class ConvLayer(nn.Sequential):
+ def __init__(
+ self,
+ in_channel,
+ out_channel,
+ kernel_size,
+ downsample=False,
+ blur_kernel=[1, 3, 3, 1],
+ bias=True,
+ activate=True,
+ ):
+ layers = []
+
+ if downsample:
+ factor = 2
+ p = (len(blur_kernel) - factor) + (kernel_size - 1)
+ pad0 = (p + 1) // 2
+ pad1 = p // 2
+
+ layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
+
+ stride = 2
+ self.padding = 0
+
+ else:
+ stride = 1
+ self.padding = kernel_size // 2
+
+ layers.append(
+ EqualConv2d(
+ in_channel,
+ out_channel,
+ kernel_size,
+ padding=self.padding,
+ stride=stride,
+ bias=bias and not activate,
+ )
+ )
+
+ if activate:
+ if bias:
+ layers.append(FusedLeakyReLU(out_channel))
+
+ else:
+ layers.append(ScaledLeakyReLU(0.2))
+
+ super().__init__(*layers)
+
+
+class ResBlock(nn.Module):
+ def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
+ super().__init__()
+
+ self.conv1 = ConvLayer(in_channel, in_channel, 3)
+ self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
+
+ self.skip = ConvLayer(
+ in_channel, out_channel, 1, downsample=True, activate=False, bias=False
+ )
+
+ def forward(self, input):
+ out = self.conv1(input)
+ out = self.conv2(out)
+
+ skip = self.skip(input)
+ out = (out + skip) / math.sqrt(2)
+
+ return out
+
+
+class Discriminator(nn.Module):
+ def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
+ super().__init__()
+
+ channels = {
+ 4: 512,
+ 8: 512,
+ 16: 512,
+ 32: 512,
+ 64: 256 * channel_multiplier,
+ 128: 128 * channel_multiplier,
+ 256: 64 * channel_multiplier,
+ 512: 32 * channel_multiplier,
+ 1024: 16 * channel_multiplier,
+ }
+
+ convs = [ConvLayer(3, channels[size], 1)]
+
+ log_size = int(math.log(size, 2))
+
+ in_channel = channels[size]
+
+ #这里代码是8个大残差block,让feature map大小从1024到4
+ for i in range(log_size, 2, -1):
+ out_channel = channels[2 ** (i - 1)]
+
+ convs.append(ResBlock(in_channel, out_channel, blur_kernel))
+
+ in_channel = out_channel
+
+ self.convs = nn.Sequential(*convs)
+
+ self.stddev_group = 4
+ self.stddev_feat = 1
+
+ self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
+ self.final_linear = nn.Sequential(
+ EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'),
+ EqualLinear(channels[4], 1),
+ )
+
+ def forward(self, input):
+ out = self.convs(input)
+
+ batch, channel, height, width = out.shape
+ group = min(batch, self.stddev_group)
+ stddev = out.view(
+ group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
+ )
+ stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
+ stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
+ stddev = stddev.repeat(group, 1, height, width)
+ out = torch.cat([out, stddev], 1)
+
+ out = self.final_conv(out)
+
+ out = out.view(batch, -1)
+ out = self.final_linear(out)
+
+ return out
+
diff --git a/models/stylegan2/op/__init__.py b/models/stylegan2/op/__init__.py
new file mode 100644
index 0000000..d0918d9
--- /dev/null
+++ b/models/stylegan2/op/__init__.py
@@ -0,0 +1,2 @@
+from .fused_act import FusedLeakyReLU, fused_leaky_relu
+from .upfirdn2d import upfirdn2d
diff --git a/models/stylegan2/op/__pycache__/__init__.cpython-310.pyc b/models/stylegan2/op/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000..3b27b09
Binary files /dev/null and b/models/stylegan2/op/__pycache__/__init__.cpython-310.pyc differ
diff --git a/models/stylegan2/op/__pycache__/fused_act.cpython-310.pyc b/models/stylegan2/op/__pycache__/fused_act.cpython-310.pyc
new file mode 100644
index 0000000..63cdef7
Binary files /dev/null and b/models/stylegan2/op/__pycache__/fused_act.cpython-310.pyc differ
diff --git a/models/stylegan2/op/__pycache__/upfirdn2d.cpython-310.pyc b/models/stylegan2/op/__pycache__/upfirdn2d.cpython-310.pyc
new file mode 100644
index 0000000..29d0747
Binary files /dev/null and b/models/stylegan2/op/__pycache__/upfirdn2d.cpython-310.pyc differ
diff --git a/models/stylegan2/op/fused_act.py b/models/stylegan2/op/fused_act.py
new file mode 100644
index 0000000..0eb2815
--- /dev/null
+++ b/models/stylegan2/op/fused_act.py
@@ -0,0 +1,40 @@
+import os
+
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+module_path = os.path.dirname(__file__)
+
+
+
+class FusedLeakyReLU(nn.Module):
+ def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
+ super().__init__()
+
+ self.bias = nn.Parameter(torch.zeros(channel))
+ self.negative_slope = negative_slope
+ self.scale = scale
+
+ def forward(self, input):
+ return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
+
+
+def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
+ rest_dim = [1] * (input.ndim - bias.ndim - 1)
+ input = input.cuda()
+ if input.ndim == 3:
+ return (
+ F.leaky_relu(
+ input + bias.view(1, *rest_dim, bias.shape[0]), negative_slope=negative_slope
+ )
+ * scale #增益值,激活函数里的 gain(torch中scale) 是一个增益值,增益值是指的非线性函数稳态时输入幅度与输出幅度的比值,通常被用来乘在激活函数之后使激活函数更加稳定。
+ )
+ else:
+ return (
+ F.leaky_relu(
+ input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=negative_slope
+ )
+ * scale
+ )
+
diff --git a/models/stylegan2/op/upfirdn2d.py b/models/stylegan2/op/upfirdn2d.py
new file mode 100644
index 0000000..02fc25a
--- /dev/null
+++ b/models/stylegan2/op/upfirdn2d.py
@@ -0,0 +1,60 @@
+import os
+
+import torch
+from torch.nn import functional as F
+
+
+module_path = os.path.dirname(__file__)
+
+
+
+def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
+ out = upfirdn2d_native(
+ input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]
+ )
+
+ return out
+
+
+def upfirdn2d_native(
+ input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
+):
+ _, channel, in_h, in_w = input.shape
+ input = input.reshape(-1, in_h, in_w, 1)
+
+ _, in_h, in_w, minor = input.shape
+ kernel_h, kernel_w = kernel.shape
+
+ out = input.view(-1, in_h, 1, in_w, 1, minor)
+ out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
+ out = out.view(-1, in_h * up_y, in_w * up_x, minor)
+
+ out = F.pad(
+ out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
+ )
+ out = out[
+ :,
+ max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
+ max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
+ :,
+ ]
+
+ out = out.permute(0, 3, 1, 2)
+ out = out.reshape(
+ [-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
+ )
+ w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
+ out = F.conv2d(out, w)
+ out = out.reshape(
+ -1,
+ minor,
+ in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
+ in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
+ )
+ out = out.permute(0, 2, 3, 1)
+ out = out[:, ::down_y, ::down_x, :]
+
+ out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
+ out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
+
+ return out.view(-1, channel, out_h, out_w)
\ No newline at end of file
diff --git a/models/stylegan3/dnnlib/__init__.py b/models/stylegan3/dnnlib/__init__.py
new file mode 100644
index 0000000..e7423bf
--- /dev/null
+++ b/models/stylegan3/dnnlib/__init__.py
@@ -0,0 +1,9 @@
+# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+from .util import EasyDict, make_cache_dir_path
diff --git a/models/stylegan3/dnnlib/__pycache__/__init__.cpython-310.pyc b/models/stylegan3/dnnlib/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000..99928c3
Binary files /dev/null and b/models/stylegan3/dnnlib/__pycache__/__init__.cpython-310.pyc differ
diff --git a/models/stylegan3/dnnlib/__pycache__/util.cpython-310.pyc b/models/stylegan3/dnnlib/__pycache__/util.cpython-310.pyc
new file mode 100644
index 0000000..e3082a7
Binary files /dev/null and b/models/stylegan3/dnnlib/__pycache__/util.cpython-310.pyc differ
diff --git a/models/stylegan3/dnnlib/util.py b/models/stylegan3/dnnlib/util.py
new file mode 100644
index 0000000..6bbdf3b
--- /dev/null
+++ b/models/stylegan3/dnnlib/util.py
@@ -0,0 +1,491 @@
+# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+"""Miscellaneous utility classes and functions."""
+
+import ctypes
+import fnmatch
+import importlib
+import inspect
+import numpy as np
+import os
+import shutil
+import sys
+import types
+import io
+import pickle
+import re
+import requests
+import html
+import hashlib
+import glob
+import tempfile
+import urllib
+import urllib.request
+import uuid
+
+from distutils.util import strtobool
+from typing import Any, List, Tuple, Union
+
+
+# Util classes
+# ------------------------------------------------------------------------------------------
+
+
+class EasyDict(dict):
+ """Convenience class that behaves like a dict but allows access with the attribute syntax."""
+
+ def __getattr__(self, name: str) -> Any:
+ try:
+ return self[name]
+ except KeyError:
+ raise AttributeError(name)
+
+ def __setattr__(self, name: str, value: Any) -> None:
+ self[name] = value
+
+ def __delattr__(self, name: str) -> None:
+ del self[name]
+
+
+class Logger(object):
+ """Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file."""
+
+ def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True):
+ self.file = None
+
+ if file_name is not None:
+ self.file = open(file_name, file_mode)
+
+ self.should_flush = should_flush
+ self.stdout = sys.stdout
+ self.stderr = sys.stderr
+
+ sys.stdout = self
+ sys.stderr = self
+
+ def __enter__(self) -> "Logger":
+ return self
+
+ def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
+ self.close()
+
+ def write(self, text: Union[str, bytes]) -> None:
+ """Write text to stdout (and a file) and optionally flush."""
+ if isinstance(text, bytes):
+ text = text.decode()
+ if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
+ return
+
+ if self.file is not None:
+ self.file.write(text)
+
+ self.stdout.write(text)
+
+ if self.should_flush:
+ self.flush()
+
+ def flush(self) -> None:
+ """Flush written text to both stdout and a file, if open."""
+ if self.file is not None:
+ self.file.flush()
+
+ self.stdout.flush()
+
+ def close(self) -> None:
+ """Flush, close possible files, and remove stdout/stderr mirroring."""
+ self.flush()
+
+ # if using multiple loggers, prevent closing in wrong order
+ if sys.stdout is self:
+ sys.stdout = self.stdout
+ if sys.stderr is self:
+ sys.stderr = self.stderr
+
+ if self.file is not None:
+ self.file.close()
+ self.file = None
+
+
+# Cache directories
+# ------------------------------------------------------------------------------------------
+
+_dnnlib_cache_dir = None
+
+def set_cache_dir(path: str) -> None:
+ global _dnnlib_cache_dir
+ _dnnlib_cache_dir = path
+
+def make_cache_dir_path(*paths: str) -> str:
+ if _dnnlib_cache_dir is not None:
+ return os.path.join(_dnnlib_cache_dir, *paths)
+ if 'DNNLIB_CACHE_DIR' in os.environ:
+ return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths)
+ if 'HOME' in os.environ:
+ return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths)
+ if 'USERPROFILE' in os.environ:
+ return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths)
+ return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths)
+
+# Small util functions
+# ------------------------------------------------------------------------------------------
+
+
+def format_time(seconds: Union[int, float]) -> str:
+ """Convert the seconds to human readable string with days, hours, minutes and seconds."""
+ s = int(np.rint(seconds))
+
+ if s < 60:
+ return "{0}s".format(s)
+ elif s < 60 * 60:
+ return "{0}m {1:02}s".format(s // 60, s % 60)
+ elif s < 24 * 60 * 60:
+ return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60)
+ else:
+ return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60)
+
+
+def format_time_brief(seconds: Union[int, float]) -> str:
+ """Convert the seconds to human readable string with days, hours, minutes and seconds."""
+ s = int(np.rint(seconds))
+
+ if s < 60:
+ return "{0}s".format(s)
+ elif s < 60 * 60:
+ return "{0}m {1:02}s".format(s // 60, s % 60)
+ elif s < 24 * 60 * 60:
+ return "{0}h {1:02}m".format(s // (60 * 60), (s // 60) % 60)
+ else:
+ return "{0}d {1:02}h".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24)
+
+
+def ask_yes_no(question: str) -> bool:
+ """Ask the user the question until the user inputs a valid answer."""
+ while True:
+ try:
+ print("{0} [y/n]".format(question))
+ return strtobool(input().lower())
+ except ValueError:
+ pass
+
+
+def tuple_product(t: Tuple) -> Any:
+ """Calculate the product of the tuple elements."""
+ result = 1
+
+ for v in t:
+ result *= v
+
+ return result
+
+
+_str_to_ctype = {
+ "uint8": ctypes.c_ubyte,
+ "uint16": ctypes.c_uint16,
+ "uint32": ctypes.c_uint32,
+ "uint64": ctypes.c_uint64,
+ "int8": ctypes.c_byte,
+ "int16": ctypes.c_int16,
+ "int32": ctypes.c_int32,
+ "int64": ctypes.c_int64,
+ "float32": ctypes.c_float,
+ "float64": ctypes.c_double
+}
+
+
+def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]:
+ """Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes."""
+ type_str = None
+
+ if isinstance(type_obj, str):
+ type_str = type_obj
+ elif hasattr(type_obj, "__name__"):
+ type_str = type_obj.__name__
+ elif hasattr(type_obj, "name"):
+ type_str = type_obj.name
+ else:
+ raise RuntimeError("Cannot infer type name from input")
+
+ assert type_str in _str_to_ctype.keys()
+
+ my_dtype = np.dtype(type_str)
+ my_ctype = _str_to_ctype[type_str]
+
+ assert my_dtype.itemsize == ctypes.sizeof(my_ctype)
+
+ return my_dtype, my_ctype
+
+
+def is_pickleable(obj: Any) -> bool:
+ try:
+ with io.BytesIO() as stream:
+ pickle.dump(obj, stream)
+ return True
+ except:
+ return False
+
+
+# Functionality to import modules/objects by name, and call functions by name
+# ------------------------------------------------------------------------------------------
+
+def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]:
+ """Searches for the underlying module behind the name to some python object.
+ Returns the module and the object name (original name with module part removed)."""
+
+ # allow convenience shorthands, substitute them by full names
+ obj_name = re.sub("^np.", "numpy.", obj_name)
+ obj_name = re.sub("^tf.", "tensorflow.", obj_name)
+
+ # list alternatives for (module_name, local_obj_name)
+ parts = obj_name.split(".")
+ name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)]
+
+ # try each alternative in turn
+ for module_name, local_obj_name in name_pairs:
+ try:
+ module = importlib.import_module(module_name) # may raise ImportError
+ get_obj_from_module(module, local_obj_name) # may raise AttributeError
+ return module, local_obj_name
+ except:
+ pass
+
+ # maybe some of the modules themselves contain errors?
+ for module_name, _local_obj_name in name_pairs:
+ try:
+ importlib.import_module(module_name) # may raise ImportError
+ except ImportError:
+ if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"):
+ raise
+
+ # maybe the requested attribute is missing?
+ for module_name, local_obj_name in name_pairs:
+ try:
+ module = importlib.import_module(module_name) # may raise ImportError
+ get_obj_from_module(module, local_obj_name) # may raise AttributeError
+ except ImportError:
+ pass
+
+ # we are out of luck, but we have no idea why
+ raise ImportError(obj_name)
+
+
+def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any:
+ """Traverses the object name and returns the last (rightmost) python object."""
+ if obj_name == '':
+ return module
+ obj = module
+ for part in obj_name.split("."):
+ obj = getattr(obj, part)
+ return obj
+
+
+def get_obj_by_name(name: str) -> Any:
+ """Finds the python object with the given name."""
+ module, obj_name = get_module_from_obj_name(name)
+ return get_obj_from_module(module, obj_name)
+
+
+def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any:
+ """Finds the python object with the given name and calls it as a function."""
+ assert func_name is not None
+ func_obj = get_obj_by_name(func_name)
+ assert callable(func_obj)
+ return func_obj(*args, **kwargs)
+
+
+def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any:
+ """Finds the python class with the given name and constructs it with the given arguments."""
+ return call_func_by_name(*args, func_name=class_name, **kwargs)
+
+
+def get_module_dir_by_obj_name(obj_name: str) -> str:
+ """Get the directory path of the module containing the given object name."""
+ module, _ = get_module_from_obj_name(obj_name)
+ return os.path.dirname(inspect.getfile(module))
+
+
+def is_top_level_function(obj: Any) -> bool:
+ """Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'."""
+ return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__
+
+
+def get_top_level_function_name(obj: Any) -> str:
+ """Return the fully-qualified name of a top-level function."""
+ assert is_top_level_function(obj)
+ module = obj.__module__
+ if module == '__main__':
+ module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0]
+ return module + "." + obj.__name__
+
+
+# File system helpers
+# ------------------------------------------------------------------------------------------
+
+def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]:
+ """List all files recursively in a given directory while ignoring given file and directory names.
+ Returns list of tuples containing both absolute and relative paths."""
+ assert os.path.isdir(dir_path)
+ base_name = os.path.basename(os.path.normpath(dir_path))
+
+ if ignores is None:
+ ignores = []
+
+ result = []
+
+ for root, dirs, files in os.walk(dir_path, topdown=True):
+ for ignore_ in ignores:
+ dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)]
+
+ # dirs need to be edited in-place
+ for d in dirs_to_remove:
+ dirs.remove(d)
+
+ files = [f for f in files if not fnmatch.fnmatch(f, ignore_)]
+
+ absolute_paths = [os.path.join(root, f) for f in files]
+ relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths]
+
+ if add_base_to_relative:
+ relative_paths = [os.path.join(base_name, p) for p in relative_paths]
+
+ assert len(absolute_paths) == len(relative_paths)
+ result += zip(absolute_paths, relative_paths)
+
+ return result
+
+
+def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None:
+ """Takes in a list of tuples of (src, dst) paths and copies files.
+ Will create all necessary directories."""
+ for file in files:
+ target_dir_name = os.path.dirname(file[1])
+
+ # will create all intermediate-level directories
+ if not os.path.exists(target_dir_name):
+ os.makedirs(target_dir_name)
+
+ shutil.copyfile(file[0], file[1])
+
+
+# URL helpers
+# ------------------------------------------------------------------------------------------
+
+def is_url(obj: Any, allow_file_urls: bool = False) -> bool:
+ """Determine whether the given object is a valid URL string."""
+ if not isinstance(obj, str) or not "://" in obj:
+ return False
+ if allow_file_urls and obj.startswith('file://'):
+ return True
+ try:
+ res = requests.compat.urlparse(obj)
+ if not res.scheme or not res.netloc or not "." in res.netloc:
+ return False
+ res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
+ if not res.scheme or not res.netloc or not "." in res.netloc:
+ return False
+ except:
+ return False
+ return True
+
+
+def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any:
+ """Download the given URL and return a binary-mode file object to access the data."""
+ assert num_attempts >= 1
+ assert not (return_filename and (not cache))
+
+ # Doesn't look like an URL scheme so interpret it as a local filename.
+ if not re.match('^[a-z]+://', url):
+ return url if return_filename else open(url, "rb")
+
+ # Handle file URLs. This code handles unusual file:// patterns that
+ # arise on Windows:
+ #
+ # file:///c:/foo.txt
+ #
+ # which would translate to a local '/c:/foo.txt' filename that's
+ # invalid. Drop the forward slash for such pathnames.
+ #
+ # If you touch this code path, you should test it on both Linux and
+ # Windows.
+ #
+ # Some internet resources suggest using urllib.request.url2pathname() but
+ # but that converts forward slashes to backslashes and this causes
+ # its own set of problems.
+ if url.startswith('file://'):
+ filename = urllib.parse.urlparse(url).path
+ if re.match(r'^/[a-zA-Z]:', filename):
+ filename = filename[1:]
+ return filename if return_filename else open(filename, "rb")
+
+ assert is_url(url)
+
+ # Lookup from cache.
+ if cache_dir is None:
+ cache_dir = make_cache_dir_path('downloads')
+
+ url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
+ if cache:
+ cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
+ if len(cache_files) == 1:
+ filename = cache_files[0]
+ return filename if return_filename else open(filename, "rb")
+
+ # Download.
+ url_name = None
+ url_data = None
+ with requests.Session() as session:
+ if verbose:
+ print("Downloading %s ..." % url, end="", flush=True)
+ for attempts_left in reversed(range(num_attempts)):
+ try:
+ with session.get(url) as res:
+ res.raise_for_status()
+ if len(res.content) == 0:
+ raise IOError("No data received")
+
+ if len(res.content) < 8192:
+ content_str = res.content.decode("utf-8")
+ if "download_warning" in res.headers.get("Set-Cookie", ""):
+ links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
+ if len(links) == 1:
+ url = requests.compat.urljoin(url, links[0])
+ raise IOError("Google Drive virus checker nag")
+ if "Google Drive - Quota exceeded" in content_str:
+ raise IOError("Google Drive download quota exceeded -- please try again later")
+
+ match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
+ url_name = match[1] if match else url
+ url_data = res.content
+ if verbose:
+ print(" done")
+ break
+ except KeyboardInterrupt:
+ raise
+ except:
+ if not attempts_left:
+ if verbose:
+ print(" failed")
+ raise
+ if verbose:
+ print(".", end="", flush=True)
+
+ # Save to cache.
+ if cache:
+ safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
+ cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
+ temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
+ os.makedirs(cache_dir, exist_ok=True)
+ with open(temp_file, "wb") as f:
+ f.write(url_data)
+ os.replace(temp_file, cache_file) # atomic
+ if return_filename:
+ return cache_file
+
+ # Return data as file object.
+ assert not return_filename
+ return io.BytesIO(url_data)
diff --git a/models/stylegan3/model_3.py b/models/stylegan3/model_3.py
new file mode 100644
index 0000000..9a50d16
--- /dev/null
+++ b/models/stylegan3/model_3.py
@@ -0,0 +1,529 @@
+# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+"""Generator architecture from the paper
+"Alias-Free Generative Adversarial Networks"."""
+
+import numpy as np
+import scipy.signal
+import scipy.optimize
+import torch
+from torch_utils import misc
+from torch_utils import persistence
+from torch_utils.ops import conv2d_gradfix
+from torch_utils.ops import filtered_lrelu
+from torch_utils.ops import bias_act
+
+#----------------------------------------------------------------------------
+
+@misc.profiled_function
+def modulated_conv2d(
+ x, # Input tensor: [batch_size, in_channels, in_height, in_width]
+ w, # Weight tensor: [out_channels, in_channels, kernel_height, kernel_width]
+ s, # Style tensor: [batch_size, in_channels]
+ demodulate = True, # Apply weight demodulation?
+ padding = 0, # Padding: int or [padH, padW]
+ input_gain = None, # Optional scale factors for the input channels: [], [in_channels], or [batch_size, in_channels]
+):
+ with misc.suppress_tracer_warnings(): # this value will be treated as a constant
+ batch_size = int(x.shape[0])
+ out_channels, in_channels, kh, kw = w.shape
+ misc.assert_shape(w, [out_channels, in_channels, kh, kw]) # [OIkk]
+ misc.assert_shape(x, [batch_size, in_channels, None, None]) # [NIHW]
+ misc.assert_shape(s, [batch_size, in_channels]) # [NI]
+
+ # Pre-normalize inputs.
+ if demodulate:
+ w = w * w.square().mean([1,2,3], keepdim=True).rsqrt()
+ s = s * s.square().mean().rsqrt()
+
+ # Modulate weights.
+ w = w.unsqueeze(0) # [NOIkk]
+ w = w * s.unsqueeze(1).unsqueeze(3).unsqueeze(4) # [NOIkk]
+
+ # Demodulate weights.
+ if demodulate:
+ dcoefs = (w.square().sum(dim=[2,3,4]) + 1e-8).rsqrt() # [NO]
+ w = w * dcoefs.unsqueeze(2).unsqueeze(3).unsqueeze(4) # [NOIkk]
+
+ # Apply input scaling.
+ if input_gain is not None:
+ input_gain = input_gain.expand(batch_size, in_channels) # [NI]
+ w = w * input_gain.unsqueeze(1).unsqueeze(3).unsqueeze(4) # [NOIkk]
+
+ # Execute as one fused op using grouped convolution.
+ x = x.reshape(1, -1, *x.shape[2:])
+ w = w.reshape(-1, in_channels, kh, kw)
+ x = conv2d_gradfix.conv2d(input=x, weight=w.to(x.dtype), padding=padding, groups=batch_size)
+ x = x.reshape(batch_size, -1, *x.shape[2:])
+ return x
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class FullyConnectedLayer(torch.nn.Module):
+ def __init__(self,
+ in_features, # Number of input features.
+ out_features, # Number of output features.
+ activation = 'linear', # Activation function: 'relu', 'lrelu', etc.
+ bias = True, # Apply additive bias before the activation function?
+ lr_multiplier = 1, # Learning rate multiplier.
+ weight_init = 1, # Initial standard deviation of the weight tensor.
+ bias_init = 0, # Initial value of the additive bias.
+ ):
+ super().__init__()
+ self.in_features = in_features
+ self.out_features = out_features
+ self.activation = activation
+ self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) * (weight_init / lr_multiplier))
+ bias_init = np.broadcast_to(np.asarray(bias_init, dtype=np.float32), [out_features])
+ self.bias = torch.nn.Parameter(torch.from_numpy(bias_init / lr_multiplier)) if bias else None
+ self.weight_gain = lr_multiplier / np.sqrt(in_features)
+ self.bias_gain = lr_multiplier
+
+ def forward(self, x):
+ w = self.weight.to(x.dtype) * self.weight_gain
+ b = self.bias
+ if b is not None:
+ b = b.to(x.dtype)
+ if self.bias_gain != 1:
+ b = b * self.bias_gain
+ if self.activation == 'linear' and b is not None:
+ x = torch.addmm(b.unsqueeze(0), x, w.t())
+ else:
+ x = x.matmul(w.t())
+ x = bias_act.bias_act(x, b, act=self.activation)
+ return x
+
+ def extra_repr(self):
+ return f'in_features={self.in_features:d}, out_features={self.out_features:d}, activation={self.activation:s}'
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class MappingNetwork(torch.nn.Module):
+ def __init__(self,
+ z_dim, # Input latent (Z) dimensionality.
+ c_dim, # Conditioning label (C) dimensionality, 0 = no labels.
+ w_dim, # Intermediate latent (W) dimensionality.
+ num_ws, # Number of intermediate latents to output.
+ num_layers = 2, # Number of mapping layers.
+ lr_multiplier = 0.01, # Learning rate multiplier for the mapping layers.
+ w_avg_beta = 0.998, # Decay for tracking the moving average of W during training.
+ ):
+ super().__init__()
+ self.z_dim = z_dim
+ self.c_dim = c_dim
+ self.w_dim = w_dim
+ self.num_ws = num_ws
+ self.num_layers = num_layers
+ self.w_avg_beta = w_avg_beta
+
+ # Construct layers.
+ self.embed = FullyConnectedLayer(self.c_dim, self.w_dim) if self.c_dim > 0 else None
+ features = [self.z_dim + (self.w_dim if self.c_dim > 0 else 0)] + [self.w_dim] * self.num_layers
+ for idx, in_features, out_features in zip(range(num_layers), features[:-1], features[1:]):
+ layer = FullyConnectedLayer(in_features, out_features, activation='lrelu', lr_multiplier=lr_multiplier)
+ setattr(self, f'fc{idx}', layer)
+ self.register_buffer('w_avg', torch.zeros([w_dim]))
+
+ def forward(self, z, c=0, truncation_psi=1, truncation_cutoff=None, update_emas=False):
+ #将传入的z由list改为tensor 好像改得不对,还是别改把
+ # z = torch.tensor( [item.cpu().detach().numpy() for item in z] )
+ misc.assert_shape(z, [None, self.z_dim])
+ if truncation_cutoff is None:
+ truncation_cutoff = self.num_ws
+
+ # Embed, normalize, and concatenate inputs.
+ x = z.to(torch.float32)
+ x = x * (x.square().mean(1, keepdim=True) + 1e-8).rsqrt()
+ if self.c_dim > 0:
+ misc.assert_shape(c, [None, self.c_dim])
+ y = self.embed(c.to(torch.float32))
+ y = y * (y.square().mean(1, keepdim=True) + 1e-8).rsqrt()
+ x = torch.cat([x, y], dim=1) if x is not None else y
+
+ # Execute layers.
+ for idx in range(self.num_layers):
+ x = getattr(self, f'fc{idx}')(x)
+
+ # Update moving average of W.
+ if update_emas:
+ self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta))
+
+ # Broadcast and apply truncation.
+ x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
+ if truncation_psi != 1:
+ x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi)
+ return x
+
+ def extra_repr(self):
+ return f'z_dim={self.z_dim:d}, c_dim={self.c_dim:d}, w_dim={self.w_dim:d}, num_ws={self.num_ws:d}'
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class SynthesisInput(torch.nn.Module):
+ def __init__(self,
+ w_dim, # Intermediate latent (W) dimensionality.
+ channels, # Number of output channels.
+ size, # Output spatial size: int or [width, height].
+ sampling_rate, # Output sampling rate.
+ bandwidth, # Output bandwidth.
+ ):
+ super().__init__()
+ self.w_dim = w_dim
+ self.channels = channels
+ self.size = np.broadcast_to(np.asarray(size), [2])
+ self.sampling_rate = sampling_rate
+ self.bandwidth = bandwidth
+
+ # Draw random frequencies from uniform 2D disc.
+ freqs = torch.randn([self.channels, 2])
+ radii = freqs.square().sum(dim=1, keepdim=True).sqrt()
+ freqs /= radii * radii.square().exp().pow(0.25)
+ freqs *= bandwidth
+ phases = torch.rand([self.channels]) - 0.5
+
+ # Setup parameters and buffers.
+ self.weight = torch.nn.Parameter(torch.randn([self.channels, self.channels]))
+ self.affine = FullyConnectedLayer(w_dim, 4, weight_init=0, bias_init=[1,0,0,0])
+ self.register_buffer('transform', torch.eye(3, 3)) # User-specified inverse transform wrt. resulting image.
+ self.register_buffer('freqs', freqs)
+ self.register_buffer('phases', phases)
+
+ def forward(self, w):
+ # Introduce batch dimension.
+ transforms = self.transform.unsqueeze(0) # [batch, row, col]
+ freqs = self.freqs.unsqueeze(0) # [batch, channel, xy]
+ phases = self.phases.unsqueeze(0) # [batch, channel]
+
+ # Apply learned transformation.
+ t = self.affine(w) # t = (r_c, r_s, t_x, t_y)
+ t = t / t[:, :2].norm(dim=1, keepdim=True) # t' = (r'_c, r'_s, t'_x, t'_y)
+ m_r = torch.eye(3, device=w.device).unsqueeze(0).repeat([w.shape[0], 1, 1]) # Inverse rotation wrt. resulting image.
+ m_r[:, 0, 0] = t[:, 0] # r'_c
+ m_r[:, 0, 1] = -t[:, 1] # r'_s
+ m_r[:, 1, 0] = t[:, 1] # r'_s
+ m_r[:, 1, 1] = t[:, 0] # r'_c
+ m_t = torch.eye(3, device=w.device).unsqueeze(0).repeat([w.shape[0], 1, 1]) # Inverse translation wrt. resulting image.
+ m_t[:, 0, 2] = -t[:, 2] # t'_x
+ m_t[:, 1, 2] = -t[:, 3] # t'_y
+ transforms = m_r @ m_t @ transforms # First rotate resulting image, then translate, and finally apply user-specified transform.
+
+ # Transform frequencies.
+ phases = phases + (freqs @ transforms[:, :2, 2:]).squeeze(2)
+ freqs = freqs @ transforms[:, :2, :2]
+
+ # Dampen out-of-band frequencies that may occur due to the user-specified transform.
+ amplitudes = (1 - (freqs.norm(dim=2) - self.bandwidth) / (self.sampling_rate / 2 - self.bandwidth)).clamp(0, 1)
+
+ # Construct sampling grid.
+ theta = torch.eye(2, 3, device=w.device)
+ theta[0, 0] = 0.5 * self.size[0] / self.sampling_rate
+ theta[1, 1] = 0.5 * self.size[1] / self.sampling_rate
+ grids = torch.nn.functional.affine_grid(theta.unsqueeze(0), [1, 1, self.size[1], self.size[0]], align_corners=False)
+
+ # Compute Fourier features.
+ x = (grids.unsqueeze(3) @ freqs.permute(0, 2, 1).unsqueeze(1).unsqueeze(2)).squeeze(3) # [batch, height, width, channel]
+ x = x + phases.unsqueeze(1).unsqueeze(2)
+ x = torch.sin(x * (np.pi * 2))
+ x = x * amplitudes.unsqueeze(1).unsqueeze(2)
+
+ # Apply trainable mapping.
+ weight = self.weight / np.sqrt(self.channels)
+ x = x @ weight.t()
+
+ # Ensure correct shape.
+ x = x.permute(0, 3, 1, 2) # [batch, channel, height, width]
+ misc.assert_shape(x, [w.shape[0], self.channels, int(self.size[1]), int(self.size[0])])
+ return x
+
+ def extra_repr(self):
+ return '\n'.join([
+ f'w_dim={self.w_dim:d}, channels={self.channels:d}, size={list(self.size)},',
+ f'sampling_rate={self.sampling_rate:g}, bandwidth={self.bandwidth:g}'])
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class SynthesisLayer(torch.nn.Module):
+ def __init__(self,
+ w_dim, # Intermediate latent (W) dimensionality.
+ is_torgb, # Is this the final ToRGB layer?
+ is_critically_sampled, # Does this layer use critical sampling?
+ use_fp16, # Does this layer use FP16?
+
+ # Input & output specifications.
+ in_channels, # Number of input channels.
+ out_channels, # Number of output channels.
+ in_size, # Input spatial size: int or [width, height].
+ out_size, # Output spatial size: int or [width, height].
+ in_sampling_rate, # Input sampling rate (s).
+ out_sampling_rate, # Output sampling rate (s).
+ in_cutoff, # Input cutoff frequency (f_c).
+ out_cutoff, # Output cutoff frequency (f_c).
+ in_half_width, # Input transition band half-width (f_h).
+ out_half_width, # Output Transition band half-width (f_h).
+
+ # Hyperparameters.
+ conv_kernel = 3, # Convolution kernel size. Ignored for final the ToRGB layer.
+ filter_size = 6, # Low-pass filter size relative to the lower resolution when up/downsampling.
+ lrelu_upsampling = 2, # Relative sampling rate for leaky ReLU. Ignored for final the ToRGB layer.
+ use_radial_filters = False, # Use radially symmetric downsampling filter? Ignored for critically sampled layers.
+ conv_clamp = 256, # Clamp the output to [-X, +X], None = disable clamping.
+ magnitude_ema_beta = 0.999, # Decay rate for the moving average of input magnitudes.
+ ):
+ super().__init__()
+ self.w_dim = w_dim
+ self.is_torgb = is_torgb
+ self.is_critically_sampled = is_critically_sampled
+ self.use_fp16 = use_fp16
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.in_size = np.broadcast_to(np.asarray(in_size), [2])
+ self.out_size = np.broadcast_to(np.asarray(out_size), [2])
+ self.in_sampling_rate = in_sampling_rate
+ self.out_sampling_rate = out_sampling_rate
+ self.tmp_sampling_rate = max(in_sampling_rate, out_sampling_rate) * (1 if is_torgb else lrelu_upsampling)
+ self.in_cutoff = in_cutoff
+ self.out_cutoff = out_cutoff
+ self.in_half_width = in_half_width
+ self.out_half_width = out_half_width
+ self.conv_kernel = 1 if is_torgb else conv_kernel
+ self.conv_clamp = conv_clamp
+ self.magnitude_ema_beta = magnitude_ema_beta
+
+ # Setup parameters and buffers.
+ self.affine = FullyConnectedLayer(self.w_dim, self.in_channels, bias_init=1)
+ self.weight = torch.nn.Parameter(torch.randn([self.out_channels, self.in_channels, self.conv_kernel, self.conv_kernel]))
+ self.bias = torch.nn.Parameter(torch.zeros([self.out_channels]))
+ self.register_buffer('magnitude_ema', torch.ones([]))
+
+ # Design upsampling filter.
+ self.up_factor = int(np.rint(self.tmp_sampling_rate / self.in_sampling_rate))
+ assert self.in_sampling_rate * self.up_factor == self.tmp_sampling_rate
+ self.up_taps = filter_size * self.up_factor if self.up_factor > 1 and not self.is_torgb else 1
+ self.register_buffer('up_filter', self.design_lowpass_filter(
+ numtaps=self.up_taps, cutoff=self.in_cutoff, width=self.in_half_width*2, fs=self.tmp_sampling_rate))
+
+ # Design downsampling filter.
+ self.down_factor = int(np.rint(self.tmp_sampling_rate / self.out_sampling_rate))
+ assert self.out_sampling_rate * self.down_factor == self.tmp_sampling_rate
+ self.down_taps = filter_size * self.down_factor if self.down_factor > 1 and not self.is_torgb else 1
+ self.down_radial = use_radial_filters and not self.is_critically_sampled
+ self.register_buffer('down_filter', self.design_lowpass_filter(
+ numtaps=self.down_taps, cutoff=self.out_cutoff, width=self.out_half_width*2, fs=self.tmp_sampling_rate, radial=self.down_radial))
+
+ # Compute padding.
+ pad_total = (self.out_size - 1) * self.down_factor + 1 # Desired output size before downsampling.
+ pad_total -= (self.in_size + self.conv_kernel - 1) * self.up_factor # Input size after upsampling.
+ pad_total += self.up_taps + self.down_taps - 2 # Size reduction caused by the filters.
+ pad_lo = (pad_total + self.up_factor) // 2 # Shift sample locations according to the symmetric interpretation (Appendix C.3).
+ pad_hi = pad_total - pad_lo
+ self.padding = [int(pad_lo[0]), int(pad_hi[0]), int(pad_lo[1]), int(pad_hi[1])]
+
+ def forward(self, x, w, noise_mode='random', force_fp32=False, update_emas=False):
+ assert noise_mode in ['random', 'const', 'none'] # unused
+ misc.assert_shape(x, [None, self.in_channels, int(self.in_size[1]), int(self.in_size[0])])
+ misc.assert_shape(w, [x.shape[0], self.w_dim])
+
+ # Track input magnitude.
+ if update_emas:
+ with torch.autograd.profiler.record_function('update_magnitude_ema'):
+ magnitude_cur = x.detach().to(torch.float32).square().mean()
+ self.magnitude_ema.copy_(magnitude_cur.lerp(self.magnitude_ema, self.magnitude_ema_beta))
+ input_gain = self.magnitude_ema.rsqrt()
+
+ # Execute affine layer.
+ styles = self.affine(w)
+ if self.is_torgb:
+ weight_gain = 1 / np.sqrt(self.in_channels * (self.conv_kernel ** 2))
+ styles = styles * weight_gain
+
+ # Execute modulated conv2d.
+ dtype = torch.float16 if (self.use_fp16 and not force_fp32 and x.device.type == 'cuda') else torch.float32
+ x = modulated_conv2d(x=x.to(dtype), w=self.weight, s=styles,
+ padding=self.conv_kernel-1, demodulate=(not self.is_torgb), input_gain=input_gain)
+
+ # Execute bias, filtered leaky ReLU, and clamping.
+ gain = 1 if self.is_torgb else np.sqrt(2)
+ slope = 1 if self.is_torgb else 0.2
+ x = filtered_lrelu.filtered_lrelu(x=x, fu=self.up_filter, fd=self.down_filter, b=self.bias.to(x.dtype),
+ up=self.up_factor, down=self.down_factor, padding=self.padding, gain=gain, slope=slope, clamp=self.conv_clamp)
+
+ # Ensure correct shape and dtype.
+ misc.assert_shape(x, [None, self.out_channels, int(self.out_size[1]), int(self.out_size[0])])
+ assert x.dtype == dtype
+ return x
+
+ @staticmethod
+ def design_lowpass_filter(numtaps, cutoff, width, fs, radial=False):
+ assert numtaps >= 1
+
+ # Identity filter.
+ if numtaps == 1:
+ return None
+
+ # Separable Kaiser low-pass filter.
+ if not radial:
+ f = scipy.signal.firwin(numtaps=numtaps, cutoff=cutoff, width=width, fs=fs)
+ return torch.as_tensor(f, dtype=torch.float32)
+
+ # Radially symmetric jinc-based filter.
+ x = (np.arange(numtaps) - (numtaps - 1) / 2) / fs
+ r = np.hypot(*np.meshgrid(x, x))
+ f = scipy.special.j1(2 * cutoff * (np.pi * r)) / (np.pi * r)
+ beta = scipy.signal.kaiser_beta(scipy.signal.kaiser_atten(numtaps, width / (fs / 2)))
+ w = np.kaiser(numtaps, beta)
+ f *= np.outer(w, w)
+ f /= np.sum(f)
+ return torch.as_tensor(f, dtype=torch.float32)
+
+ def extra_repr(self):
+ return '\n'.join([
+ f'w_dim={self.w_dim:d}, is_torgb={self.is_torgb},',
+ f'is_critically_sampled={self.is_critically_sampled}, use_fp16={self.use_fp16},',
+ f'in_sampling_rate={self.in_sampling_rate:g}, out_sampling_rate={self.out_sampling_rate:g},',
+ f'in_cutoff={self.in_cutoff:g}, out_cutoff={self.out_cutoff:g},',
+ f'in_half_width={self.in_half_width:g}, out_half_width={self.out_half_width:g},',
+ f'in_size={list(self.in_size)}, out_size={list(self.out_size)},',
+ f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}'])
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class SynthesisNetwork(torch.nn.Module):
+ def __init__(self,
+ w_dim, # Intermediate latent (W) dimensionality. 512
+ img_resolution, # Output image resolution. 1024
+ img_channels, # Number of color channels. 3
+ channel_base = 32768, # Overall multiplier for the number of channels.通道总体倍增因子
+ channel_max = 512, # Maximum number of channels in any layer.
+ num_layers = 14, # Total number of layers, excluding Fourier features and ToRGB.
+ num_critical = 2, # Number of critically sampled layers at the end.
+ first_cutoff = 2, # Cutoff frequency of the first layer (f_{c,0}).
+ first_stopband = 2**2.1, # Minimum stopband of the first layer (f_{t,0}).
+ last_stopband_rel = 2**0.3, # Minimum stopband of the last layer, expressed relative to the cutoff.
+ margin_size = 10, # Number of additional pixels outside the image.
+ output_scale = 0.25, # Scale factor for the output image.
+ num_fp16_res = 4, # Use FP16 for the N highest resolutions.
+ **layer_kwargs, # Arguments for SynthesisLayer.
+ ):
+ super().__init__()
+ self.w_dim = w_dim
+ self.num_ws = num_layers + 2
+ self.img_resolution = img_resolution
+ self.img_channels = img_channels
+ self.num_layers = num_layers
+ self.num_critical = num_critical
+ self.margin_size = margin_size
+ self.output_scale = output_scale
+ self.num_fp16_res = num_fp16_res
+
+ # Geometric progression of layer cutoffs and min. stopbands.
+ last_cutoff = self.img_resolution / 2 # f_{c,N}
+ last_stopband = last_cutoff * last_stopband_rel # f_{t,N}
+ exponents = np.minimum(np.arange(self.num_layers + 1) / (self.num_layers - self.num_critical), 1)
+ cutoffs = first_cutoff * (last_cutoff / first_cutoff) ** exponents # f_c[i] [ 2. 3.1748021 5.0396842 8. 12.69920842, 20.1587368 32. 50.79683366 80.63494719 128., 203.18733465 322.53978877 512. 512. 512. ]
+ stopbands = first_stopband * (last_stopband / first_stopband) ** exponents # f_t[i]
+
+ # Compute remaining layer parameters.
+ sampling_rates = np.exp2(np.ceil(np.log2(np.minimum(stopbands * 2, self.img_resolution)))) # s[i]
+ half_widths = np.maximum(stopbands, sampling_rates / 2) - cutoffs # f_h[i]
+ sizes = sampling_rates + self.margin_size * 2
+ sizes[-2:] = self.img_resolution
+ channels = np.rint(np.minimum((channel_base / 2) / cutoffs, channel_max))
+ channels[-1] = self.img_channels
+
+ # Construct layers.
+ self.input = SynthesisInput(
+ w_dim=self.w_dim, channels=int(channels[0]), size=int(sizes[0]), #sizes:[ 36. 36. 52. 52. 84. 148. 148. 276. 276. 532. 1044. 1044., 1044. 1024. 1024.]
+ sampling_rate=sampling_rates[0], bandwidth=cutoffs[0]) #sampling_rates :[ 16. 16. 32. 32. 64. 128. 128. 256. 256. 512. 1024. 1024., 1024. 1024. 1024.]
+ self.layer_names = []
+ for idx in range(self.num_layers + 1):
+ prev = max(idx - 1, 0)
+ is_torgb = (idx == self.num_layers)
+ is_critically_sampled = (idx >= self.num_layers - self.num_critical)
+ use_fp16 = (sampling_rates[idx] * (2 ** self.num_fp16_res) > self.img_resolution)
+ layer = SynthesisLayer(
+ w_dim=self.w_dim, is_torgb=is_torgb, is_critically_sampled=is_critically_sampled, use_fp16=use_fp16,
+ in_channels=int(channels[prev]), out_channels= int(channels[idx]),
+ in_size=int(sizes[prev]), out_size=int(sizes[idx]),
+ in_sampling_rate=int(sampling_rates[prev]), out_sampling_rate=int(sampling_rates[idx]),
+ in_cutoff=cutoffs[prev], out_cutoff=cutoffs[idx],
+ in_half_width=half_widths[prev], out_half_width=half_widths[idx],
+ **layer_kwargs)
+ name = f'L{idx}_{layer.out_size[0]}_{layer.out_channels}'
+ setattr(self, name, layer)
+ self.layer_names.append(name)
+
+ def forward(self, ws, **layer_kwargs):
+ misc.assert_shape(ws, [None, self.num_ws, self.w_dim])
+ ws = ws.to(torch.float32).unbind(dim=1)
+
+ # Execute layers.
+ x = self.input(ws[0])
+ for name, w in zip(self.layer_names, ws[1:]):
+ x = getattr(self, name)(x, w, **layer_kwargs)
+ if self.output_scale != 1:
+ x = x * self.output_scale
+
+ # Ensure correct shape and dtype.
+ misc.assert_shape(x, [None, self.img_channels, self.img_resolution, self.img_resolution])
+ x = x.to(torch.float32)
+ return x
+
+ def extra_repr(self):
+ return '\n'.join([
+ f'w_dim={self.w_dim:d}, num_ws={self.num_ws:d},',
+ f'img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d},',
+ f'num_layers={self.num_layers:d}, num_critical={self.num_critical:d},',
+ f'margin_size={self.margin_size:d}, num_fp16_res={self.num_fp16_res:d}'])
+
+#----------------------------------------------------------------------------
+
+@persistence.persistent_class
+class Generator(torch.nn.Module):
+ def __init__(self,
+ z_dim, # Input latent (Z) dimensionality.
+ c_dim, # Conditioning label (C) dimensionality.
+ w_dim, # Intermediate latent (W) dimensionality.
+ img_resolution, # Output resolution.
+ img_channels, # Number of output color channels.
+ mapping_kwargs = {}, # Arguments for MappingNetwork.
+ **synthesis_kwargs, # Arguments for SynthesisNetwork.
+ ):
+ super().__init__()
+ self.z_dim = z_dim #512
+ self.c_dim = c_dim #0
+ self.w_dim = w_dim #512
+ self.img_resolution = img_resolution
+ self.img_channels = img_channels
+ self.synthesis = SynthesisNetwork(w_dim=w_dim, img_resolution=img_resolution, img_channels=img_channels, **synthesis_kwargs)
+ self.num_ws = self.synthesis.num_ws #16
+ self.mapping = MappingNetwork(z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs)
+
+ # def mean_latent(self, n_latent):
+ # latent_in = torch.randn(
+ # #此处的style_dim应与w_dim对应
+ # n_latent, self.w_dim, device=self.synthesis.input.weight.device
+ # )
+ # latent = self.synthesis.styles(latent_in).mean(0, keepdim=True)
+ #
+ # return latent
+
+ def forward(self, z, c=None, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
+ # print("-----------------------------------")
+ # print(z)
+ # print("-----------------------------------")
+ ws = self.mapping(z, c = None, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
+ img = self.synthesis(ws, update_emas=update_emas, **synthesis_kwargs)
+ return img
+
+#----------------------------------------------------------------------------
diff --git a/models/stylegan3/run_optimization3.py b/models/stylegan3/run_optimization3.py
new file mode 100644
index 0000000..ac72fc4
--- /dev/null
+++ b/models/stylegan3/run_optimization3.py
@@ -0,0 +1,267 @@
+import argparse
+import math
+import os
+import pickle
+
+import torchvision
+from torch import optim
+from tqdm import tqdm
+
+import torch
+import clip
+
+
+class CLIPLoss(torch.nn.Module):
+
+ def __init__(self, opts):
+ super(CLIPLoss, self).__init__()
+ self.model, self.preprocess = clip.load("ViT-B/32", device="cuda")
+ self.upsample = torch.nn.Upsample(scale_factor=7)
+ self.avg_pool = torch.nn.AvgPool2d(kernel_size=opts.stylegan_size // 32)
+
+ def forward(self, image, text):
+ image = self.avg_pool(self.upsample(image))
+ similarity = 1 - self.model(image, text)[0] / 100
+ return similarity
+
+
+from torch import nn
+import sys
+sys.path.append('/home/ly/StyleCLIP-main/models/facial_recognition')
+from model_irse import Backbone
+
+
+class IDLoss(nn.Module):
+ def __init__(self, opts):
+ super(IDLoss, self).__init__()
+ print('Loading ResNet ArcFace')
+ self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
+ self.facenet.load_state_dict(torch.load(opts.ir_se50_weights))
+ self.pool = torch.nn.AdaptiveAvgPool2d((256, 256))
+ self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
+ self.facenet.eval()
+ self.facenet.cuda()
+ self.opts = opts
+
+ def extract_feats(self, x):
+ if x.shape[2] != 256:
+ x = self.pool(x)
+ x = x[:, :, 35:223, 32:220] # Crop interesting region
+ x = self.face_pool(x)
+ x_feats = self.facenet(x)
+ return x_feats
+
+ def forward(self, y_hat, y):
+ n_samples = y.shape[0]
+ y_feats = self.extract_feats(y) # Otherwise use the feature from there
+ y_hat_feats = self.extract_feats(y_hat)
+ y_feats = y_feats.detach()
+ loss = 0
+ sim_improvement = 0
+ count = 0
+ for i in range(n_samples):
+ diff_target = y_hat_feats[i].dot(y_feats[i])
+ loss += 1 - diff_target
+ count += 1
+
+ return loss / count, sim_improvement / count
+sys.path.append('/home/ly/StyleCLIP-main/mapper/training')
+from train_utils import STYLESPACE_DIMENSIONS
+from model_3 import Generator
+from model_3 import SynthesisNetwork
+from model_3 import SynthesisLayer
+
+
+sys.path.append('/home/ly/StyleCLIP-main')
+from utils import ensure_checkpoint_exists
+
+STYLESPACE_INDICES_WITHOUT_TORGB = [i for i in range(len(STYLESPACE_DIMENSIONS)) if i not in list(range(1, len(STYLESPACE_DIMENSIONS), 3))]
+
+def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
+ lr_ramp = min(1, (1 - t) / rampdown)
+ lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
+ lr_ramp = lr_ramp * min(1, t / rampup)
+
+ return initial_lr * lr_ramp
+
+
+def main(args):
+ ensure_checkpoint_exists(args.ckpt)
+ # 把描述加载进clip预训练模型里面去
+ text_inputs = torch.cat([clip.tokenize(args.description)]).cuda()
+ # print('text_input是: ', text_inputs)
+ #tokenizer clip分词的机制 依据规则
+ #以及词汇表的总量
+ '''
+ --description "a person with purple hair"
+ tensor([[49406, 320, 2533, 593, 5496, 2225, 49407, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0]], device='cuda:0',
+ dtype=torch.int32)
+ --description "a person with red hair"
+ tensor([[49406, 320, 2533, 593, 736, 2225, 49407, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0]], device='cuda:0',
+ dtype=torch.int32)
+ '''
+
+ os.makedirs(args.results_dir, exist_ok=True)
+ #改成stylegan3的输入
+
+ # with open('/home/ly/StyleCLIP-main/models/stylegan3/torch_utils/stylegan3-r-afhqv2-512x512.pkl', 'rb') as f:
+ # G = pickle.load(f)['G_ema'].cuda() # torch.nn.Module
+ # z = torch.randn([1, G.z_dim]).cuda() # latent codes
+ # c = None # class labels (not used in this example)
+ # img = G(z, c) # NCHW, float32, dynamic range [-1, +1], no truncation
+
+ # g_ema = Generator(512, 0, 512,args.stylegan_size, 3) #512,0,512,1024,3
+ # with open('/home/ly/StyleCLIP-main/models/stylegan3/torch_utils/stylegan3-r-afhqv2-512x512.pkl', 'rb') as f:
+ #stylegan3-r-ffhqu-1024x1024.pkl 生成图片的效果欠佳 别用
+ #stylegan3-t-ffhq-1024x1024.pkl 生成效果一般 loss值较好
+ #stylegan3-r-ffhq-1024x1024.pkl 折中
+ #stylegan3-t-ffhqu-1024x1024.pkl 生成图片可以 loss较差
+ with open('/home/ly/StyleCLIP-main/pretrained_models/stylegan3-t-ffhq-1024x1024.pkl', 'rb') as f: #stylespace_dimensions [512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 256, 256, 256, 128, 128, 128, 64, 64, 64, 32, 32]
+ # new_p = pickle.load(f)
+ # print(new_p)
+ # print("new_p")
+ # print(new_p.keys())
+ # G_ema.load_state_dict(pickle.load(f)['G_ema'].cuda(), strict=False) 这种方式模型加载不进来
+ g_ema = pickle.load(f)['G_ema'].cuda() # torch.nn.Module 这种方式推演三百步的图片平均要4分钟
+ z = torch.randn([1, g_ema.z_dim]).cuda() # latent codes
+ c = None # class labels (not used in this example)
+ #g_ema.load_state_dict(torch.load(args.ckpt)["g_ema"], strict=False)
+ # 将模型对象设置为评估模式
+ g_ema.eval()
+ #更改cuda卡号
+ g_ema = g_ema.cuda()
+ # device = torch.cuda.current_device()
+ # print('cuda:',device)
+ mean_latent = torch.randn([1, g_ema.z_dim]).cuda()
+ torch.save(mean_latent,'/home/ly/StyleCLIP-main/pretrained_models/latent_code/style3.pt')
+ # print('mean_latent: ', mean_latent)
+
+ if args.latent_path:
+ latent_code_init = torch.load(args.latent_path).cuda()
+ # elif args.mode == "edit":
+ # latent_code_init_not_trunc = torch.randn(1, 512).cuda()
+ # with torch.no_grad():
+ # _, latent_code_init, _ = g_ema([latent_code_init_not_trunc], return_latents=True,
+ # truncation=args.truncation, truncation_latent=mean_latent)
+ else:
+ # latent_code_init = mean_latent.detach().clone().repeat(1, 18, 1) #在维度1上重复18次
+ latent_code_init = mean_latent.detach().clone()
+ # def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
+ with torch.no_grad():
+ print("mean_latent ", mean_latent.shape)
+ # img_orig, _ = g_ema([latent_code_init], c, input_is_latent=True, randomize_noise=False)
+ img_orig = g_ema(latent_code_init, c)
+
+ if args.work_in_stylespace:
+ with torch.no_grad():
+ _, _, latent_code_init = g_ema([latent_code_init], input_is_latent=True, return_latents=True)
+ latent = [s.detach().clone() for s in latent_code_init]
+ for c, s in enumerate(latent):
+ if c in STYLESPACE_INDICES_WITHOUT_TORGB:
+ s.requires_grad = True
+ else:
+ latent = latent_code_init.detach().clone()
+ latent.requires_grad = True
+
+ clip_loss = CLIPLoss(args)
+ id_loss = IDLoss(args)
+
+ if args.work_in_stylespace:
+ optimizer = optim.Adam(latent, lr=args.lr)
+ else:
+ optimizer = optim.Adam([latent], lr=args.lr)
+
+ pbar = tqdm(range(args.step))
+
+ for i in pbar:
+ t = i / args.step
+ lr = get_lr(t, args.lr)
+ optimizer.param_groups[0]["lr"] = lr
+
+ img_gen = g_ema(latent,c)
+
+ c_loss = clip_loss(img_gen, text_inputs)
+
+ if args.id_lambda > 0:
+ #身份损失
+ i_loss = id_loss(img_gen, img_orig)[0]
+ else:
+ i_loss = 0
+
+ if args.mode == "edit":
+ if args.work_in_stylespace:
+ l2_loss = sum([((latent_code_init[c] - latent[c]) ** 2).sum() for c in range(len(latent_code_init))])
+ else:
+ #与潜在空间的L2距离
+ l2_loss = ((latent_code_init - latent) ** 2).sum()
+ loss = c_loss + args.l2_lambda * l2_loss + args.id_lambda * i_loss
+ else:
+ loss = c_loss
+
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
+
+ pbar.set_description(
+ (
+ f"loss: {loss.item():.4f};"
+ )
+ )
+ if args.save_intermediate_image_every > 0 and i % args.save_intermediate_image_every == 0:
+ with torch.no_grad():
+ img_gen = g_ema(latent, c)
+
+ torchvision.utils.save_image(img_gen, f"results/stygan3Clip/{str(i).zfill(5)}.jpg", normalize=True, range=(-1, 1))
+
+ if args.mode == "edit":
+ final_result = torch.cat([img_orig, img_gen])
+ else:
+ final_result = img_gen
+
+ return final_result
+
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--description", type=str, default="a person with purple hair", help="the text that guides the editing/generation")
+ parser.add_argument("--ckpt", type=str, default="../pretrained_models/stylegan2-ffhq-config-f.pt", help="pretrained StyleGAN2 weights")
+ parser.add_argument("--stylegan_size", type=int, default=1024, help="StyleGAN resolution")
+ parser.add_argument("--lr_rampup", type=float, default=0.05)
+ parser.add_argument("--lr", type=float, default=0.1)
+ parser.add_argument("--step", type=int, default=300, help="number of optimization steps")
+ parser.add_argument("--mode", type=str, default="edit", choices=["edit", "free_generation"], help="choose between edit an image an generate a free one")
+ parser.add_argument("--l2_lambda", type=float, default=0.008, help="weight of the latent distance (used for editing only)")
+ parser.add_argument("--id_lambda", type=float, default=0.000, help="weight of id loss (used for editing only)")
+ parser.add_argument("--latent_path", type=str, default=None, help="starts the optimization from the given latent code if provided. Otherwose, starts from"
+ "the mean latent in a free generation, and from a random one in editing. "
+ "Expects a .pt format")
+ parser.add_argument("--truncation", type=float, default=1, help="used only for the initial latent vector, and only when a latent code path is"
+ "not provided")
+ parser.add_argument('--work_in_stylespace', default=False, action='store_true')
+ parser.add_argument("--save_intermediate_image_every", type=int, default=20, help="if > 0 then saves intermidate results during the optimization")
+ parser.add_argument("--results_dir", type=str, default="results")
+ parser.add_argument('--ir_se50_weights', default='../pretrained_models/model_ir_se50.pth', type=str,
+ help="Path to facial recognition network used in ID loss")
+
+ args = parser.parse_args()
+
+ result_image = main(args)
+
+ torchvision.utils.save_image(result_image.detach().cpu(), os.path.join(args.results_dir, "final_result.jpg"), normalize=True, scale_each=True, range=(-1, 1))
+
+
diff --git a/models/stylegan3/show_pkl.py b/models/stylegan3/show_pkl.py
new file mode 100644
index 0000000..ae21b6d
--- /dev/null
+++ b/models/stylegan3/show_pkl.py
@@ -0,0 +1,194 @@
+# show_pkl.py
+
+import pickle
+import sys
+import torch
+sys.path.append('/home/ly/StyleCLIP-main/models/stylegan3/torch_utils')
+
+#
+# path = '/home/ly/StyleCLIP-main/models/stylegan3/torch_utils/stylegan3-r-afhqv2-512x512.pkl' # path='/root/……/aus_openface.pkl' pkl文件所在路径
+#
+# f = open(path, 'rb')
+# data = pickle.load(f)
+#
+# print(data)
+# print(len(data))
+# print(data.shape)
+
+with open('/home/ly/StyleCLIP-main/models/stylegan3/torch_utils/stylegan3-r-afhqv2-512x512.pkl', 'rb') as f:
+ G = pickle.load(f)['G_ema'].cuda() # torch.nn.Module
+z = torch.randn([1, G.z_dim]).cuda() # latent codes
+c = None # class labels (not used in this example)
+img = G(z, c) # NCHW, float32, dynamic range [-1, +1], no truncation
+print(G)
+
+
+#输出
+# Generator(
+# (synthesis): SynthesisNetwork(
+# w_dim=512, num_ws=16,
+# img_resolution=512, img_channels=3,
+# num_layers=14, num_critical=2,
+# margin_size=10, num_fp16_res=4
+# (input): SynthesisInput(
+# w_dim=512, channels=1024, size=[36, 36],
+# sampling_rate=16, bandwidth=2
+# (affine): FullyConnectedLayer(in_features=512, out_features=4, activation=linear)
+# )
+# (L0_36_1024): SynthesisLayer(
+# w_dim=512, is_torgb=False,
+# is_critically_sampled=False, use_fp16=False,
+# in_sampling_rate=16, out_sampling_rate=16,
+# in_cutoff=2, out_cutoff=2,
+# in_half_width=6, out_half_width=6,
+# in_size=[36, 36], out_size=[36, 36],
+# in_channels=1024, out_channels=1024
+# (affine): FullyConnectedLayer(in_features=512, out_features=1024, activation=linear)
+# )
+# (L1_36_1024): SynthesisLayer(
+# w_dim=512, is_torgb=False,
+# is_critically_sampled=False, use_fp16=False,
+# in_sampling_rate=16, out_sampling_rate=16,
+# in_cutoff=2, out_cutoff=2.99661,
+# in_half_width=6, out_half_width=5.00339,
+# in_size=[36, 36], out_size=[36, 36],
+# in_channels=1024, out_channels=1024
+# (affine): FullyConnectedLayer(in_features=512, out_features=1024, activation=linear)
+# )
+# (L2_52_1024): SynthesisLayer(
+# w_dim=512, is_torgb=False,
+# is_critically_sampled=False, use_fp16=False,
+# in_sampling_rate=16, out_sampling_rate=32,
+# in_cutoff=2.99661, out_cutoff=4.48985,
+# in_half_width=5.00339, out_half_width=11.5102,
+# in_size=[36, 36], out_size=[52, 52],
+# in_channels=1024, out_channels=1024
+# (affine): FullyConnectedLayer(in_features=512, out_features=1024, activation=linear)
+# )
+# (L3_52_1024): SynthesisLayer(
+# w_dim=512, is_torgb=False,
+# is_critically_sampled=False, use_fp16=False,
+# in_sampling_rate=32, out_sampling_rate=32,
+# in_cutoff=4.48985, out_cutoff=6.72717,
+# in_half_width=11.5102, out_half_width=9.27283,
+# in_size=[52, 52], out_size=[52, 52],
+# in_channels=1024, out_channels=1024
+# (affine): FullyConnectedLayer(in_features=512, out_features=1024, activation=linear)
+# )
+# (L4_84_1024): SynthesisLayer(
+# w_dim=512, is_torgb=False,
+# is_critically_sampled=False, use_fp16=True,
+# in_sampling_rate=32, out_sampling_rate=64,
+# in_cutoff=6.72717, out_cutoff=10.0794,
+# in_half_width=9.27283, out_half_width=21.9206,
+# in_size=[52, 52], out_size=[84, 84],
+# in_channels=1024, out_channels=1024
+# (affine): FullyConnectedLayer(in_features=512, out_features=1024, activation=linear)
+# )
+# (L5_84_1024): SynthesisLayer(
+# w_dim=512, is_torgb=False,
+# is_critically_sampled=False, use_fp16=True,
+# in_sampling_rate=64, out_sampling_rate=64,
+# in_cutoff=10.0794, out_cutoff=15.102,
+# in_half_width=21.9206, out_half_width=16.898,
+# in_size=[84, 84], out_size=[84, 84],
+# in_channels=1024, out_channels=1024
+# (affine): FullyConnectedLayer(in_features=512, out_features=1024, activation=linear)
+# )
+# (L6_148_1024): SynthesisLayer(
+# w_dim=512, is_torgb=False,
+# is_critically_sampled=False, use_fp16=True,
+# in_sampling_rate=64, out_sampling_rate=128,
+# in_cutoff=15.102, out_cutoff=22.6274,
+# in_half_width=16.898, out_half_width=41.3726,
+# in_size=[84, 84], out_size=[148, 148],
+# in_channels=1024, out_channels=1024
+# (affine): FullyConnectedLayer(in_features=512, out_features=1024, activation=linear)
+# )
+# (L7_148_967): SynthesisLayer(
+# w_dim=512, is_torgb=False,
+# is_critically_sampled=False, use_fp16=True,
+# in_sampling_rate=128, out_sampling_rate=128,
+# in_cutoff=22.6274, out_cutoff=33.9028,
+# in_half_width=41.3726, out_half_width=30.0972,
+# in_size=[148, 148], out_size=[148, 148],
+# in_channels=1024, out_channels=967
+# (affine): FullyConnectedLayer(in_features=512, out_features=1024, activation=linear)
+# )
+# (L8_276_645): SynthesisLayer(
+# w_dim=512, is_torgb=False,
+# is_critically_sampled=False, use_fp16=True,
+# in_sampling_rate=128, out_sampling_rate=256,
+# in_cutoff=33.9028, out_cutoff=50.7968,
+# in_half_width=30.0972, out_half_width=77.2032,
+# in_size=[148, 148], out_size=[276, 276],
+# in_channels=967, out_channels=645
+# (affine): FullyConnectedLayer(in_features=512, out_features=967, activation=linear)
+# )
+# (L9_276_431): SynthesisLayer(
+# w_dim=512, is_torgb=False,
+# is_critically_sampled=False, use_fp16=True,
+# in_sampling_rate=256, out_sampling_rate=256,
+# in_cutoff=50.7968, out_cutoff=76.1093,
+# in_half_width=77.2032, out_half_width=51.8907,
+# in_size=[276, 276], out_size=[276, 276],
+# in_channels=645, out_channels=431
+# (affine): FullyConnectedLayer(in_features=512, out_features=645, activation=linear)
+# )
+# (L10_532_287): SynthesisLayer(
+# w_dim=512, is_torgb=False,
+# is_critically_sampled=False, use_fp16=True,
+# in_sampling_rate=256, out_sampling_rate=512,
+# in_cutoff=76.1093, out_cutoff=114.035,
+# in_half_width=51.8907, out_half_width=141.965,
+# in_size=[276, 276], out_size=[532, 532],
+# in_channels=431, out_channels=287
+# (affine): FullyConnectedLayer(in_features=512, out_features=431, activation=linear)
+# )
+# (L11_532_192): SynthesisLayer(
+# w_dim=512, is_torgb=False,
+# is_critically_sampled=False, use_fp16=True,
+# in_sampling_rate=512, out_sampling_rate=512,
+# in_cutoff=114.035, out_cutoff=170.86,
+# in_half_width=141.965, out_half_width=85.1405,
+# in_size=[532, 532], out_size=[532, 532],
+# in_channels=287, out_channels=192
+# (affine): FullyConnectedLayer(in_features=512, out_features=287, activation=linear)
+# )
+# (L12_532_128): SynthesisLayer(
+# w_dim=512, is_torgb=False,
+# is_critically_sampled=True, use_fp16=True,
+# in_sampling_rate=512, out_sampling_rate=512,
+# in_cutoff=170.86, out_cutoff=256,
+# in_half_width=85.1405, out_half_width=59.173,
+# in_size=[532, 532], out_size=[532, 532],
+# in_channels=192, out_channels=128
+# (affine): FullyConnectedLayer(in_features=512, out_features=192, activation=linear)
+# )
+# (L13_512_128): SynthesisLayer(
+# w_dim=512, is_torgb=False,
+# is_critically_sampled=True, use_fp16=True,
+# in_sampling_rate=512, out_sampling_rate=512,
+# in_cutoff=256, out_cutoff=256,
+# in_half_width=59.173, out_half_width=59.173,
+# in_size=[532, 532], out_size=[512, 512],
+# in_channels=128, out_channels=128
+# (affine): FullyConnectedLayer(in_features=512, out_features=128, activation=linear)
+# )
+# (L14_512_3): SynthesisLayer(
+# w_dim=512, is_torgb=True,
+# is_critically_sampled=True, use_fp16=True,
+# in_sampling_rate=512, out_sampling_rate=512,
+# in_cutoff=256, out_cutoff=256,
+# in_half_width=59.173, out_half_width=59.173,
+# in_size=[512, 512], out_size=[512, 512],
+# in_channels=128, out_channels=3
+# (affine): FullyConnectedLayer(in_features=512, out_features=128, activation=linear)
+# )
+# )
+# (mapping): MappingNetwork(
+# z_dim=512, c_dim=0, w_dim=512, num_ws=16
+# (fc0): FullyConnectedLayer(in_features=512, out_features=512, activation=lrelu)
+# (fc1): FullyConnectedLayer(in_features=512, out_features=512, activation=lrelu)
+# )
+# )
diff --git a/models/stylegan3/test001_s3.py b/models/stylegan3/test001_s3.py
new file mode 100644
index 0000000..1df9193
--- /dev/null
+++ b/models/stylegan3/test001_s3.py
@@ -0,0 +1,37 @@
+import torchvision
+import argparse
+from argparse import Namespace
+from run_optimization3 import main
+
+parser = argparse.ArgumentParser()
+# parser.add_argument("--description", type=str, default="a person with purple hair",
+parser.add_argument("--description", type=str, default="a person with purple hair",
+ help="the text that guides the editing/generation")
+parser.add_argument("--ckpt", type=str, default="/home/ly/StyleCLIP-main/pretrained_models/stylegan3-r-ffhqu-1024x1024.pkl",
+ help="pretrained StyleGAN3 weights")
+parser.add_argument("--stylegan_size", type=int, default=1024, help="StyleGAN resolution")
+parser.add_argument("--lr_rampup", type=float, default=0.05)
+parser.add_argument("--lr", type=float, default=0.1)
+parser.add_argument("--step", type=int, default=300, help="number of optimization steps")
+parser.add_argument("--mode", type=str, default="edit", choices=["edit", "free_generation"],
+ help="choose between edit an image an generate a free one")
+parser.add_argument("--l2_lambda", type=float, default=0.008,
+ help="weight of the latent distance (used for editing only)")
+parser.add_argument("--latent_path", type=str, default=None, #"/home/ly/StyleCLIP-main/latents_test/example_celebs.pt"
+ help="starts the optimization from the given latent code if provided. Otherwise, starts from"
+ "the mean latent in a free generation, and from a random one in editing. "
+ "Expects a .pt format")
+parser.add_argument("--truncation", type=float, default=0.5,
+ help="used only for the initial latent vector, and only when a latent code path is"
+ "not provided")
+parser.add_argument("--save_intermediate_image_every", type=int, default=20,
+ help="if > 0 then saves intermidate results during the optimization")
+parser.add_argument("--results_dir", type=str, default="/home/ly/StyleCLIP-main/results/stygan3Clip")
+parser.add_argument('--work_in_stylespace', default=False, action='store_true', help="trains a mapper in S instead of W+")
+parser.add_argument('--ir_se50_weights', default='/home/ly/StyleCLIP-main/pretrained_models/model_ir_se50.pth', type=str, help="Path to facial recognition network used in ID loss")
+parser.add_argument('--id_lambda', default=0.10, type=float, help='ID loss multiplier factor')
+
+args = vars(parser.parse_args())
+result_image = main(Namespace(**args))
+torchvision.utils.save_image(result_image.detach().cpu(), f"/home/ly/StyleCLIP-main/results/stygan3Clip/final_result.png", normalize=True, scale_each=True,
+ range=(-1, 1))
\ No newline at end of file
diff --git a/models/stylegan3/torch_utils/__init__.py b/models/stylegan3/torch_utils/__init__.py
new file mode 100644
index 0000000..939e7c6
--- /dev/null
+++ b/models/stylegan3/torch_utils/__init__.py
@@ -0,0 +1,9 @@
+# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+# empty
diff --git a/models/stylegan3/torch_utils/custom_ops.py b/models/stylegan3/torch_utils/custom_ops.py
new file mode 100644
index 0000000..439e445
--- /dev/null
+++ b/models/stylegan3/torch_utils/custom_ops.py
@@ -0,0 +1,157 @@
+# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+import glob
+import hashlib
+import importlib
+import os
+import re
+import shutil
+import uuid
+
+import torch
+import torch.utils.cpp_extension
+from torch.utils.file_baton import FileBaton
+
+#----------------------------------------------------------------------------
+# Global options.
+
+verbosity = 'brief' # Verbosity level: 'none', 'brief', 'full'
+
+#----------------------------------------------------------------------------
+# Internal helper funcs.
+
+def _find_compiler_bindir():
+ patterns = [
+ 'C:/Program Files*/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64',
+ 'C:/Program Files*/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64',
+ 'C:/Program Files*/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64',
+ 'C:/Program Files*/Microsoft Visual Studio */vc/bin',
+ ]
+ for pattern in patterns:
+ matches = sorted(glob.glob(pattern))
+ if len(matches):
+ return matches[-1]
+ return None
+
+#----------------------------------------------------------------------------
+
+def _get_mangled_gpu_name():
+ name = torch.cuda.get_device_name().lower()
+ out = []
+ for c in name:
+ if re.match('[a-z0-9_-]+', c):
+ out.append(c)
+ else:
+ out.append('-')
+ return ''.join(out)
+
+#----------------------------------------------------------------------------
+# Main entry point for compiling and loading C++/CUDA plugins.
+
+_cached_plugins = dict()
+
+def get_plugin(module_name, sources, headers=None, source_dir=None, **build_kwargs):
+ assert verbosity in ['none', 'brief', 'full']
+ if headers is None:
+ headers = []
+ if source_dir is not None:
+ sources = [os.path.join(source_dir, fname) for fname in sources]
+ headers = [os.path.join(source_dir, fname) for fname in headers]
+
+ # Already cached?
+ if module_name in _cached_plugins:
+ return _cached_plugins[module_name]
+
+ # Print status.
+ if verbosity == 'full':
+ print(f'Setting up PyTorch plugin "{module_name}"...')
+ elif verbosity == 'brief':
+ print(f'Setting up PyTorch plugin "{module_name}"... ', end='', flush=True)
+ verbose_build = (verbosity == 'full')
+
+ # Compile and load.
+ try: # pylint: disable=too-many-nested-blocks
+ # Make sure we can find the necessary compiler binaries.
+ if os.name == 'nt' and os.system("where cl.exe >nul 2>nul") != 0:
+ compiler_bindir = _find_compiler_bindir()
+ if compiler_bindir is None:
+ raise RuntimeError(f'Could not find MSVC/GCC/CLANG installation on this computer. Check _find_compiler_bindir() in "{__file__}".')
+ os.environ['PATH'] += ';' + compiler_bindir
+
+ # Some containers set TORCH_CUDA_ARCH_LIST to a list that can either
+ # break the build or unnecessarily restrict what's available to nvcc.
+ # Unset it to let nvcc decide based on what's available on the
+ # machine.
+ os.environ['TORCH_CUDA_ARCH_LIST'] = ''
+
+ # Incremental build md5sum trickery. Copies all the input source files
+ # into a cached build directory under a combined md5 digest of the input
+ # source files. Copying is done only if the combined digest has changed.
+ # This keeps input file timestamps and filenames the same as in previous
+ # extension builds, allowing for fast incremental rebuilds.
+ #
+ # This optimization is done only in case all the source files reside in
+ # a single directory (just for simplicity) and if the TORCH_EXTENSIONS_DIR
+ # environment variable is set (we take this as a signal that the user
+ # actually cares about this.)
+ #
+ # EDIT: We now do it regardless of TORCH_EXTENSIOS_DIR, in order to work
+ # around the *.cu dependency bug in ninja config.
+ #
+ all_source_files = sorted(sources + headers)
+ all_source_dirs = set(os.path.dirname(fname) for fname in all_source_files)
+ if len(all_source_dirs) == 1: # and ('TORCH_EXTENSIONS_DIR' in os.environ):
+
+ # Compute combined hash digest for all source files.
+ hash_md5 = hashlib.md5()
+ for src in all_source_files:
+ with open(src, 'rb') as f:
+ hash_md5.update(f.read())
+
+ # Select cached build directory name.
+ source_digest = hash_md5.hexdigest()
+ build_top_dir = torch.utils.cpp_extension._get_build_directory(module_name, verbose=verbose_build) # pylint: disable=protected-access
+ cached_build_dir = os.path.join(build_top_dir, f'{source_digest}-{_get_mangled_gpu_name()}')
+
+ if not os.path.isdir(cached_build_dir):
+ tmpdir = f'{build_top_dir}/srctmp-{uuid.uuid4().hex}'
+ os.makedirs(tmpdir)
+ for src in all_source_files:
+ shutil.copyfile(src, os.path.join(tmpdir, os.path.basename(src)))
+ try:
+ os.replace(tmpdir, cached_build_dir) # atomic
+ except OSError:
+ # source directory already exists, delete tmpdir and its contents.
+ shutil.rmtree(tmpdir)
+ if not os.path.isdir(cached_build_dir): raise
+
+ # Compile.
+ cached_sources = [os.path.join(cached_build_dir, os.path.basename(fname)) for fname in sources]
+ torch.utils.cpp_extension.load(name=module_name, build_directory=cached_build_dir,
+ verbose=verbose_build, sources=cached_sources, **build_kwargs)
+ else:
+ torch.utils.cpp_extension.load(name=module_name, verbose=verbose_build, sources=sources, **build_kwargs)
+
+ # Load.
+ module = importlib.import_module(module_name)
+
+ except:
+ if verbosity == 'brief':
+ print('Failed!')
+ raise
+
+ # Print status and add to cache dict.
+ if verbosity == 'full':
+ print(f'Done setting up PyTorch plugin "{module_name}".')
+ elif verbosity == 'brief':
+ print('Done.')
+ _cached_plugins[module_name] = module
+ return module
+
+#----------------------------------------------------------------------------
diff --git a/models/stylegan3/torch_utils/misc.py b/models/stylegan3/torch_utils/misc.py
new file mode 100644
index 0000000..23d9c95
--- /dev/null
+++ b/models/stylegan3/torch_utils/misc.py
@@ -0,0 +1,267 @@
+# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+import re
+import contextlib
+import numpy as np
+import torch
+import warnings
+import dnnlib
+
+#----------------------------------------------------------------------------
+# Cached construction of constant tensors. Avoids CPU=>GPU copy when the
+# same constant is used multiple times.
+
+_constant_cache = dict()
+
+def constant(value, shape=None, dtype=None, device=None, memory_format=None):
+ value = np.asarray(value)
+ if shape is not None:
+ shape = tuple(shape)
+ if dtype is None:
+ dtype = torch.get_default_dtype()
+ if device is None:
+ device = torch.device('cpu')
+ if memory_format is None:
+ memory_format = torch.contiguous_format
+
+ key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format)
+ tensor = _constant_cache.get(key, None)
+ if tensor is None:
+ tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
+ if shape is not None:
+ tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
+ tensor = tensor.contiguous(memory_format=memory_format)
+ _constant_cache[key] = tensor
+ return tensor
+
+#----------------------------------------------------------------------------
+# Replace NaN/Inf with specified numerical values.
+
+try:
+ nan_to_num = torch.nan_to_num # 1.8.0a0
+except AttributeError:
+ def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None): # pylint: disable=redefined-builtin
+ assert isinstance(input, torch.Tensor)
+ if posinf is None:
+ posinf = torch.finfo(input.dtype).max
+ if neginf is None:
+ neginf = torch.finfo(input.dtype).min
+ assert nan == 0
+ return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out)
+
+#----------------------------------------------------------------------------
+# Symbolic assert.
+
+try:
+ symbolic_assert = torch._assert # 1.8.0a0 # pylint: disable=protected-access
+except AttributeError:
+ symbolic_assert = torch.Assert # 1.7.0
+
+#----------------------------------------------------------------------------
+# Context manager to temporarily suppress known warnings in torch.jit.trace().
+# Note: Cannot use catch_warnings because of https://bugs.python.org/issue29672
+
+@contextlib.contextmanager
+def suppress_tracer_warnings():
+ flt = ('ignore', None, torch.jit.TracerWarning, None, 0)
+ warnings.filters.insert(0, flt)
+ yield
+ warnings.filters.remove(flt)
+
+#----------------------------------------------------------------------------
+# Assert that the shape of a tensor matches the given list of integers.
+# None indicates that the size of a dimension is allowed to vary.
+# Performs symbolic assertion when used in torch.jit.trace().
+
+def assert_shape(tensor, ref_shape):
+ #使用ndim报错:AttributeError: 'list' object has no attribute 'ndim'
+ if tensor.ndim != len(ref_shape):
+ raise AssertionError(f'Wrong number of dimensions: got {tensor.ndim}, expected {len(ref_shape)}')
+ for idx, (size, ref_size) in enumerate(zip(tensor.shape, ref_shape)):
+ if ref_size is None:
+ pass
+ elif isinstance(ref_size, torch.Tensor):
+ with suppress_tracer_warnings(): # as_tensor results are registered as constants
+ symbolic_assert(torch.equal(torch.as_tensor(size), ref_size), f'Wrong size for dimension {idx}')
+ elif isinstance(size, torch.Tensor):
+ with suppress_tracer_warnings(): # as_tensor results are registered as constants
+ symbolic_assert(torch.equal(size, torch.as_tensor(ref_size)), f'Wrong size for dimension {idx}: expected {ref_size}')
+ elif size != ref_size:
+ raise AssertionError(f'Wrong size for dimension {idx}: got {size}, expected {ref_size}')
+
+#----------------------------------------------------------------------------
+# Function decorator that calls torch.autograd.profiler.record_function().
+
+def profiled_function(fn):
+ def decorator(*args, **kwargs):
+ with torch.autograd.profiler.record_function(fn.__name__):
+ return fn(*args, **kwargs)
+ decorator.__name__ = fn.__name__
+ return decorator
+
+#----------------------------------------------------------------------------
+# Sampler for torch.utils.data.DataLoader that loops over the dataset
+# indefinitely, shuffling items as it goes.
+
+class InfiniteSampler(torch.utils.data.Sampler):
+ def __init__(self, dataset, rank=0, num_replicas=1, shuffle=True, seed=0, window_size=0.5):
+ assert len(dataset) > 0
+ assert num_replicas > 0
+ assert 0 <= rank < num_replicas
+ assert 0 <= window_size <= 1
+ super().__init__(dataset)
+ self.dataset = dataset
+ self.rank = rank
+ self.num_replicas = num_replicas
+ self.shuffle = shuffle
+ self.seed = seed
+ self.window_size = window_size
+
+ def __iter__(self):
+ order = np.arange(len(self.dataset))
+ rnd = None
+ window = 0
+ if self.shuffle:
+ rnd = np.random.RandomState(self.seed)
+ rnd.shuffle(order)
+ window = int(np.rint(order.size * self.window_size))
+
+ idx = 0
+ while True:
+ i = idx % order.size
+ if idx % self.num_replicas == self.rank:
+ yield order[i]
+ if window >= 2:
+ j = (i - rnd.randint(window)) % order.size
+ order[i], order[j] = order[j], order[i]
+ idx += 1
+
+#----------------------------------------------------------------------------
+# Utilities for operating with torch.nn.Module parameters and buffers.
+
+def params_and_buffers(module):
+ assert isinstance(module, torch.nn.Module)
+ return list(module.parameters()) + list(module.buffers())
+
+def named_params_and_buffers(module):
+ assert isinstance(module, torch.nn.Module)
+ return list(module.named_parameters()) + list(module.named_buffers())
+
+def copy_params_and_buffers(src_module, dst_module, require_all=False):
+ assert isinstance(src_module, torch.nn.Module)
+ assert isinstance(dst_module, torch.nn.Module)
+ src_tensors = dict(named_params_and_buffers(src_module))
+ for name, tensor in named_params_and_buffers(dst_module):
+ assert (name in src_tensors) or (not require_all)
+ if name in src_tensors:
+ tensor.copy_(src_tensors[name].detach()).requires_grad_(tensor.requires_grad)
+
+#----------------------------------------------------------------------------
+# Context manager for easily enabling/disabling DistributedDataParallel
+# synchronization.
+
+@contextlib.contextmanager
+def ddp_sync(module, sync):
+ assert isinstance(module, torch.nn.Module)
+ if sync or not isinstance(module, torch.nn.parallel.DistributedDataParallel):
+ yield
+ else:
+ with module.no_sync():
+ yield
+
+#----------------------------------------------------------------------------
+# Check DistributedDataParallel consistency across processes.
+
+def check_ddp_consistency(module, ignore_regex=None):
+ assert isinstance(module, torch.nn.Module)
+ for name, tensor in named_params_and_buffers(module):
+ fullname = type(module).__name__ + '.' + name
+ if ignore_regex is not None and re.fullmatch(ignore_regex, fullname):
+ continue
+ tensor = tensor.detach()
+ if tensor.is_floating_point():
+ tensor = nan_to_num(tensor)
+ other = tensor.clone()
+ torch.distributed.broadcast(tensor=other, src=0)
+ assert (tensor == other).all(), fullname
+
+#----------------------------------------------------------------------------
+# Print summary table of module hierarchy.
+
+def print_module_summary(module, inputs, max_nesting=3, skip_redundant=True):
+ assert isinstance(module, torch.nn.Module)
+ assert not isinstance(module, torch.jit.ScriptModule)
+ assert isinstance(inputs, (tuple, list))
+
+ # Register hooks.
+ entries = []
+ nesting = [0]
+ def pre_hook(_mod, _inputs):
+ nesting[0] += 1
+ def post_hook(mod, _inputs, outputs):
+ nesting[0] -= 1
+ if nesting[0] <= max_nesting:
+ outputs = list(outputs) if isinstance(outputs, (tuple, list)) else [outputs]
+ outputs = [t for t in outputs if isinstance(t, torch.Tensor)]
+ entries.append(dnnlib.EasyDict(mod=mod, outputs=outputs))
+ hooks = [mod.register_forward_pre_hook(pre_hook) for mod in module.modules()]
+ hooks += [mod.register_forward_hook(post_hook) for mod in module.modules()]
+
+ # Run module.
+ outputs = module(*inputs)
+ for hook in hooks:
+ hook.remove()
+
+ # Identify unique outputs, parameters, and buffers.
+ tensors_seen = set()
+ for e in entries:
+ e.unique_params = [t for t in e.mod.parameters() if id(t) not in tensors_seen]
+ e.unique_buffers = [t for t in e.mod.buffers() if id(t) not in tensors_seen]
+ e.unique_outputs = [t for t in e.outputs if id(t) not in tensors_seen]
+ tensors_seen |= {id(t) for t in e.unique_params + e.unique_buffers + e.unique_outputs}
+
+ # Filter out redundant entries.
+ if skip_redundant:
+ entries = [e for e in entries if len(e.unique_params) or len(e.unique_buffers) or len(e.unique_outputs)]
+
+ # Construct table.
+ rows = [[type(module).__name__, 'Parameters', 'Buffers', 'Output shape', 'Datatype']]
+ rows += [['---'] * len(rows[0])]
+ param_total = 0
+ buffer_total = 0
+ submodule_names = {mod: name for name, mod in module.named_modules()}
+ for e in entries:
+ name = '' if e.mod is module else submodule_names[e.mod]
+ param_size = sum(t.numel() for t in e.unique_params)
+ buffer_size = sum(t.numel() for t in e.unique_buffers)
+ output_shapes = [str(list(t.shape)) for t in e.outputs]
+ output_dtypes = [str(t.dtype).split('.')[-1] for t in e.outputs]
+ rows += [[
+ name + (':0' if len(e.outputs) >= 2 else ''),
+ str(param_size) if param_size else '-',
+ str(buffer_size) if buffer_size else '-',
+ (output_shapes + ['-'])[0],
+ (output_dtypes + ['-'])[0],
+ ]]
+ for idx in range(1, len(e.outputs)):
+ rows += [[name + f':{idx}', '-', '-', output_shapes[idx], output_dtypes[idx]]]
+ param_total += param_size
+ buffer_total += buffer_size
+ rows += [['---'] * len(rows[0])]
+ rows += [['Total', str(param_total), str(buffer_total), '-', '-']]
+
+ # Print table.
+ widths = [max(len(cell) for cell in column) for column in zip(*rows)]
+ print()
+ for row in rows:
+ print(' '.join(cell + ' ' * (width - len(cell)) for cell, width in zip(row, widths)))
+ print()
+ return outputs
+
+#----------------------------------------------------------------------------
diff --git a/models/stylegan3/torch_utils/ops/__init__.py b/models/stylegan3/torch_utils/ops/__init__.py
new file mode 100644
index 0000000..939e7c6
--- /dev/null
+++ b/models/stylegan3/torch_utils/ops/__init__.py
@@ -0,0 +1,9 @@
+# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+# empty
diff --git a/models/stylegan3/torch_utils/ops/__pycache__/__init__.cpython-310.pyc b/models/stylegan3/torch_utils/ops/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000..09fdf46
Binary files /dev/null and b/models/stylegan3/torch_utils/ops/__pycache__/__init__.cpython-310.pyc differ
diff --git a/models/stylegan3/torch_utils/ops/__pycache__/bias_act.cpython-310.pyc b/models/stylegan3/torch_utils/ops/__pycache__/bias_act.cpython-310.pyc
new file mode 100644
index 0000000..93bd3d3
Binary files /dev/null and b/models/stylegan3/torch_utils/ops/__pycache__/bias_act.cpython-310.pyc differ
diff --git a/models/stylegan3/torch_utils/ops/__pycache__/conv2d_gradfix.cpython-310.pyc b/models/stylegan3/torch_utils/ops/__pycache__/conv2d_gradfix.cpython-310.pyc
new file mode 100644
index 0000000..32a5d81
Binary files /dev/null and b/models/stylegan3/torch_utils/ops/__pycache__/conv2d_gradfix.cpython-310.pyc differ
diff --git a/models/stylegan3/torch_utils/ops/__pycache__/conv2d_resample.cpython-310.pyc b/models/stylegan3/torch_utils/ops/__pycache__/conv2d_resample.cpython-310.pyc
new file mode 100644
index 0000000..a00f163
Binary files /dev/null and b/models/stylegan3/torch_utils/ops/__pycache__/conv2d_resample.cpython-310.pyc differ
diff --git a/models/stylegan3/torch_utils/ops/__pycache__/filtered_lrelu.cpython-310.pyc b/models/stylegan3/torch_utils/ops/__pycache__/filtered_lrelu.cpython-310.pyc
new file mode 100644
index 0000000..60f90e5
Binary files /dev/null and b/models/stylegan3/torch_utils/ops/__pycache__/filtered_lrelu.cpython-310.pyc differ
diff --git a/models/stylegan3/torch_utils/ops/__pycache__/fma.cpython-310.pyc b/models/stylegan3/torch_utils/ops/__pycache__/fma.cpython-310.pyc
new file mode 100644
index 0000000..032437b
Binary files /dev/null and b/models/stylegan3/torch_utils/ops/__pycache__/fma.cpython-310.pyc differ
diff --git a/models/stylegan3/torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-310.pyc b/models/stylegan3/torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-310.pyc
new file mode 100644
index 0000000..4f825be
Binary files /dev/null and b/models/stylegan3/torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-310.pyc differ
diff --git a/models/stylegan3/torch_utils/ops/__pycache__/upfirdn2d.cpython-310.pyc b/models/stylegan3/torch_utils/ops/__pycache__/upfirdn2d.cpython-310.pyc
new file mode 100644
index 0000000..8de62e0
Binary files /dev/null and b/models/stylegan3/torch_utils/ops/__pycache__/upfirdn2d.cpython-310.pyc differ
diff --git a/models/stylegan3/torch_utils/ops/bias_act.cpp b/models/stylegan3/torch_utils/ops/bias_act.cpp
new file mode 100644
index 0000000..3adaeee
--- /dev/null
+++ b/models/stylegan3/torch_utils/ops/bias_act.cpp
@@ -0,0 +1,99 @@
+// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include
+#include
+#include
+#include "bias_act.h"
+
+//------------------------------------------------------------------------
+
+static bool has_same_layout(torch::Tensor x, torch::Tensor y)
+{
+ if (x.dim() != y.dim())
+ return false;
+ for (int64_t i = 0; i < x.dim(); i++)
+ {
+ if (x.size(i) != y.size(i))
+ return false;
+ if (x.size(i) >= 2 && x.stride(i) != y.stride(i))
+ return false;
+ }
+ return true;
+}
+
+//------------------------------------------------------------------------
+
+static torch::Tensor bias_act(torch::Tensor x, torch::Tensor b, torch::Tensor xref, torch::Tensor yref, torch::Tensor dy, int grad, int dim, int act, float alpha, float gain, float clamp)
+{
+ // Validate arguments.
+ TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
+ TORCH_CHECK(b.numel() == 0 || (b.dtype() == x.dtype() && b.device() == x.device()), "b must have the same dtype and device as x");
+ TORCH_CHECK(xref.numel() == 0 || (xref.sizes() == x.sizes() && xref.dtype() == x.dtype() && xref.device() == x.device()), "xref must have the same shape, dtype, and device as x");
+ TORCH_CHECK(yref.numel() == 0 || (yref.sizes() == x.sizes() && yref.dtype() == x.dtype() && yref.device() == x.device()), "yref must have the same shape, dtype, and device as x");
+ TORCH_CHECK(dy.numel() == 0 || (dy.sizes() == x.sizes() && dy.dtype() == x.dtype() && dy.device() == x.device()), "dy must have the same dtype and device as x");
+ TORCH_CHECK(x.numel() <= INT_MAX, "x is too large");
+ TORCH_CHECK(b.dim() == 1, "b must have rank 1");
+ TORCH_CHECK(b.numel() == 0 || (dim >= 0 && dim < x.dim()), "dim is out of bounds");
+ TORCH_CHECK(b.numel() == 0 || b.numel() == x.size(dim), "b has wrong number of elements");
+ TORCH_CHECK(grad >= 0, "grad must be non-negative");
+
+ // Validate layout.
+ TORCH_CHECK(x.is_non_overlapping_and_dense(), "x must be non-overlapping and dense");
+ TORCH_CHECK(b.is_contiguous(), "b must be contiguous");
+ TORCH_CHECK(xref.numel() == 0 || has_same_layout(xref, x), "xref must have the same layout as x");
+ TORCH_CHECK(yref.numel() == 0 || has_same_layout(yref, x), "yref must have the same layout as x");
+ TORCH_CHECK(dy.numel() == 0 || has_same_layout(dy, x), "dy must have the same layout as x");
+
+ // Create output tensor.
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
+ torch::Tensor y = torch::empty_like(x);
+ TORCH_CHECK(has_same_layout(y, x), "y must have the same layout as x");
+
+ // Initialize CUDA kernel parameters.
+ bias_act_kernel_params p;
+ p.x = x.data_ptr();
+ p.b = (b.numel()) ? b.data_ptr() : NULL;
+ p.xref = (xref.numel()) ? xref.data_ptr() : NULL;
+ p.yref = (yref.numel()) ? yref.data_ptr() : NULL;
+ p.dy = (dy.numel()) ? dy.data_ptr() : NULL;
+ p.y = y.data_ptr();
+ p.grad = grad;
+ p.act = act;
+ p.alpha = alpha;
+ p.gain = gain;
+ p.clamp = clamp;
+ p.sizeX = (int)x.numel();
+ p.sizeB = (int)b.numel();
+ p.stepB = (b.numel()) ? (int)x.stride(dim) : 1;
+
+ // Choose CUDA kernel.
+ void* kernel;
+ AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&]
+ {
+ kernel = choose_bias_act_kernel(p);
+ });
+ TORCH_CHECK(kernel, "no CUDA kernel found for the specified activation func");
+
+ // Launch CUDA kernel.
+ p.loopX = 4;
+ int blockSize = 4 * 32;
+ int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1;
+ void* args[] = {&p};
+ AT_CUDA_CHECK(cudaLaunchKernel(kernel, gridSize, blockSize, args, 0, at::cuda::getCurrentCUDAStream()));
+ return y;
+}
+
+//------------------------------------------------------------------------
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
+{
+ m.def("bias_act", &bias_act);
+}
+
+//------------------------------------------------------------------------
diff --git a/models/stylegan3/torch_utils/ops/bias_act.cu b/models/stylegan3/torch_utils/ops/bias_act.cu
new file mode 100644
index 0000000..ed1d16f
--- /dev/null
+++ b/models/stylegan3/torch_utils/ops/bias_act.cu
@@ -0,0 +1,173 @@
+// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include
+#include "bias_act.h"
+
+//------------------------------------------------------------------------
+// Helpers.
+
+template struct InternalType;
+template <> struct InternalType { typedef double scalar_t; };
+template <> struct InternalType { typedef float scalar_t; };
+template <> struct InternalType { typedef float scalar_t; };
+
+//------------------------------------------------------------------------
+// CUDA kernel.
+
+template
+__global__ void bias_act_kernel(bias_act_kernel_params p)
+{
+ typedef typename InternalType::scalar_t scalar_t;
+ int G = p.grad;
+ scalar_t alpha = (scalar_t)p.alpha;
+ scalar_t gain = (scalar_t)p.gain;
+ scalar_t clamp = (scalar_t)p.clamp;
+ scalar_t one = (scalar_t)1;
+ scalar_t two = (scalar_t)2;
+ scalar_t expRange = (scalar_t)80;
+ scalar_t halfExpRange = (scalar_t)40;
+ scalar_t seluScale = (scalar_t)1.0507009873554804934193349852946;
+ scalar_t seluAlpha = (scalar_t)1.6732632423543772848170429916717;
+
+ // Loop over elements.
+ int xi = blockIdx.x * p.loopX * blockDim.x + threadIdx.x;
+ for (int loopIdx = 0; loopIdx < p.loopX && xi < p.sizeX; loopIdx++, xi += blockDim.x)
+ {
+ // Load.
+ scalar_t x = (scalar_t)((const T*)p.x)[xi];
+ scalar_t b = (p.b) ? (scalar_t)((const T*)p.b)[(xi / p.stepB) % p.sizeB] : 0;
+ scalar_t xref = (p.xref) ? (scalar_t)((const T*)p.xref)[xi] : 0;
+ scalar_t yref = (p.yref) ? (scalar_t)((const T*)p.yref)[xi] : 0;
+ scalar_t dy = (p.dy) ? (scalar_t)((const T*)p.dy)[xi] : one;
+ scalar_t yy = (gain != 0) ? yref / gain : 0;
+ scalar_t y = 0;
+
+ // Apply bias.
+ ((G == 0) ? x : xref) += b;
+
+ // linear
+ if (A == 1)
+ {
+ if (G == 0) y = x;
+ if (G == 1) y = x;
+ }
+
+ // relu
+ if (A == 2)
+ {
+ if (G == 0) y = (x > 0) ? x : 0;
+ if (G == 1) y = (yy > 0) ? x : 0;
+ }
+
+ // lrelu
+ if (A == 3)
+ {
+ if (G == 0) y = (x > 0) ? x : x * alpha;
+ if (G == 1) y = (yy > 0) ? x : x * alpha;
+ }
+
+ // tanh
+ if (A == 4)
+ {
+ if (G == 0) { scalar_t c = exp(x); scalar_t d = one / c; y = (x < -expRange) ? -one : (x > expRange) ? one : (c - d) / (c + d); }
+ if (G == 1) y = x * (one - yy * yy);
+ if (G == 2) y = x * (one - yy * yy) * (-two * yy);
+ }
+
+ // sigmoid
+ if (A == 5)
+ {
+ if (G == 0) y = (x < -expRange) ? 0 : one / (exp(-x) + one);
+ if (G == 1) y = x * yy * (one - yy);
+ if (G == 2) y = x * yy * (one - yy) * (one - two * yy);
+ }
+
+ // elu
+ if (A == 6)
+ {
+ if (G == 0) y = (x >= 0) ? x : exp(x) - one;
+ if (G == 1) y = (yy >= 0) ? x : x * (yy + one);
+ if (G == 2) y = (yy >= 0) ? 0 : x * (yy + one);
+ }
+
+ // selu
+ if (A == 7)
+ {
+ if (G == 0) y = (x >= 0) ? seluScale * x : (seluScale * seluAlpha) * (exp(x) - one);
+ if (G == 1) y = (yy >= 0) ? x * seluScale : x * (yy + seluScale * seluAlpha);
+ if (G == 2) y = (yy >= 0) ? 0 : x * (yy + seluScale * seluAlpha);
+ }
+
+ // softplus
+ if (A == 8)
+ {
+ if (G == 0) y = (x > expRange) ? x : log(exp(x) + one);
+ if (G == 1) y = x * (one - exp(-yy));
+ if (G == 2) { scalar_t c = exp(-yy); y = x * c * (one - c); }
+ }
+
+ // swish
+ if (A == 9)
+ {
+ if (G == 0)
+ y = (x < -expRange) ? 0 : x / (exp(-x) + one);
+ else
+ {
+ scalar_t c = exp(xref);
+ scalar_t d = c + one;
+ if (G == 1)
+ y = (xref > halfExpRange) ? x : x * c * (xref + d) / (d * d);
+ else
+ y = (xref > halfExpRange) ? 0 : x * c * (xref * (two - d) + two * d) / (d * d * d);
+ yref = (xref < -expRange) ? 0 : xref / (exp(-xref) + one) * gain;
+ }
+ }
+
+ // Apply gain.
+ y *= gain * dy;
+
+ // Clamp.
+ if (clamp >= 0)
+ {
+ if (G == 0)
+ y = (y > -clamp & y < clamp) ? y : (y >= 0) ? clamp : -clamp;
+ else
+ y = (yref > -clamp & yref < clamp) ? y : 0;
+ }
+
+ // Store.
+ ((T*)p.y)[xi] = (T)y;
+ }
+}
+
+//------------------------------------------------------------------------
+// CUDA kernel selection.
+
+template void* choose_bias_act_kernel(const bias_act_kernel_params& p)
+{
+ if (p.act == 1) return (void*)bias_act_kernel;
+ if (p.act == 2) return (void*)bias_act_kernel;
+ if (p.act == 3) return (void*)bias_act_kernel;
+ if (p.act == 4) return (void*)bias_act_kernel;
+ if (p.act == 5) return (void*)bias_act_kernel;
+ if (p.act == 6) return (void*)bias_act_kernel;
+ if (p.act == 7) return (void*)bias_act_kernel;
+ if (p.act == 8) return (void*)bias_act_kernel;
+ if (p.act == 9) return (void*)bias_act_kernel;
+ return NULL;
+}
+
+//------------------------------------------------------------------------
+// Template specializations.
+
+template void* choose_bias_act_kernel (const bias_act_kernel_params& p);
+template void* choose_bias_act_kernel (const bias_act_kernel_params& p);
+template void* choose_bias_act_kernel (const bias_act_kernel_params& p);
+
+//------------------------------------------------------------------------
diff --git a/models/stylegan3/torch_utils/ops/bias_act.h b/models/stylegan3/torch_utils/ops/bias_act.h
new file mode 100644
index 0000000..60b81c6
--- /dev/null
+++ b/models/stylegan3/torch_utils/ops/bias_act.h
@@ -0,0 +1,38 @@
+// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+//------------------------------------------------------------------------
+// CUDA kernel parameters.
+
+struct bias_act_kernel_params
+{
+ const void* x; // [sizeX]
+ const void* b; // [sizeB] or NULL
+ const void* xref; // [sizeX] or NULL
+ const void* yref; // [sizeX] or NULL
+ const void* dy; // [sizeX] or NULL
+ void* y; // [sizeX]
+
+ int grad;
+ int act;
+ float alpha;
+ float gain;
+ float clamp;
+
+ int sizeX;
+ int sizeB;
+ int stepB;
+ int loopX;
+};
+
+//------------------------------------------------------------------------
+// CUDA kernel selection.
+
+template void* choose_bias_act_kernel(const bias_act_kernel_params& p);
+
+//------------------------------------------------------------------------
diff --git a/models/stylegan3/torch_utils/ops/bias_act.py b/models/stylegan3/torch_utils/ops/bias_act.py
new file mode 100644
index 0000000..b2b53d7
--- /dev/null
+++ b/models/stylegan3/torch_utils/ops/bias_act.py
@@ -0,0 +1,209 @@
+# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+"""Custom PyTorch ops for efficient bias and activation."""
+
+import os
+import numpy as np
+import torch
+import dnnlib
+
+from .. import custom_ops
+from .. import misc
+
+#----------------------------------------------------------------------------
+
+activation_funcs = {
+ 'linear': dnnlib.EasyDict(func=lambda x, **_: x, def_alpha=0, def_gain=1, cuda_idx=1, ref='', has_2nd_grad=False),
+ 'relu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.relu(x), def_alpha=0, def_gain=np.sqrt(2), cuda_idx=2, ref='y', has_2nd_grad=False),
+ 'lrelu': dnnlib.EasyDict(func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha), def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y', has_2nd_grad=False),
+ 'tanh': dnnlib.EasyDict(func=lambda x, **_: torch.tanh(x), def_alpha=0, def_gain=1, cuda_idx=4, ref='y', has_2nd_grad=True),
+ 'sigmoid': dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x), def_alpha=0, def_gain=1, cuda_idx=5, ref='y', has_2nd_grad=True),
+ 'elu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.elu(x), def_alpha=0, def_gain=1, cuda_idx=6, ref='y', has_2nd_grad=True),
+ 'selu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.selu(x), def_alpha=0, def_gain=1, cuda_idx=7, ref='y', has_2nd_grad=True),
+ 'softplus': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.softplus(x), def_alpha=0, def_gain=1, cuda_idx=8, ref='y', has_2nd_grad=True),
+ 'swish': dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x) * x, def_alpha=0, def_gain=np.sqrt(2), cuda_idx=9, ref='x', has_2nd_grad=True),
+}
+
+#----------------------------------------------------------------------------
+
+_plugin = None
+_null_tensor = torch.empty([0])
+
+def _init():
+ global _plugin
+ if _plugin is None:
+ _plugin = custom_ops.get_plugin(
+ module_name='bias_act_plugin',
+ sources=['bias_act.cpp', 'bias_act.cu'],
+ headers=['bias_act.h'],
+ source_dir=os.path.dirname(__file__),
+ extra_cuda_cflags=['--use_fast_math', '--allow-unsupported-compiler'],
+ )
+ return True
+
+#----------------------------------------------------------------------------
+
+def bias_act(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None, impl='cuda'):
+ r"""Fused bias and activation function.
+
+ Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
+ and scales the result by `gain`. Each of the steps is optional. In most cases,
+ the fused op is considerably more efficient than performing the same calculation
+ using standard PyTorch ops. It supports first and second order gradients,
+ but not third order gradients.
+
+ Args:
+ x: Input activation tensor. Can be of any shape.
+ b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
+ as `x`. The shape must be known, and it must match the dimension of `x`
+ corresponding to `dim`.
+ dim: The dimension in `x` corresponding to the elements of `b`.
+ The value of `dim` is ignored if `b` is not specified.
+ act: Name of the activation function to evaluate, or `"linear"` to disable.
+ Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc.
+ See `activation_funcs` for a full list. `None` is not allowed.
+ alpha: Shape parameter for the activation function, or `None` to use the default.
+ gain: Scaling factor for the output tensor, or `None` to use default.
+ See `activation_funcs` for the default scaling of each activation function.
+ If unsure, consider specifying 1.
+ clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable
+ the clamping (default).
+ impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
+
+ Returns:
+ Tensor of the same shape and datatype as `x`.
+ """
+ assert isinstance(x, torch.Tensor)
+ assert impl in ['ref', 'cuda']
+ if impl == 'cuda' and x.device.type == 'cuda' and _init():
+ return _bias_act_cuda(dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp).apply(x, b)
+ return _bias_act_ref(x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp)
+
+#----------------------------------------------------------------------------
+
+@misc.profiled_function
+def _bias_act_ref(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None):
+ """Slow reference implementation of `bias_act()` using standard TensorFlow ops.
+ """
+ assert isinstance(x, torch.Tensor)
+ assert clamp is None or clamp >= 0
+ spec = activation_funcs[act]
+ alpha = float(alpha if alpha is not None else spec.def_alpha)
+ gain = float(gain if gain is not None else spec.def_gain)
+ clamp = float(clamp if clamp is not None else -1)
+
+ # Add bias.
+ if b is not None:
+ assert isinstance(b, torch.Tensor) and b.ndim == 1
+ assert 0 <= dim < x.ndim
+ assert b.shape[0] == x.shape[dim]
+ x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)])
+
+ # Evaluate activation function.
+ alpha = float(alpha)
+ x = spec.func(x, alpha=alpha)
+
+ # Scale by gain.
+ gain = float(gain)
+ if gain != 1:
+ x = x * gain
+
+ # Clamp.
+ if clamp >= 0:
+ x = x.clamp(-clamp, clamp) # pylint: disable=invalid-unary-operand-type
+ return x
+
+#----------------------------------------------------------------------------
+
+_bias_act_cuda_cache = dict()
+
+def _bias_act_cuda(dim=1, act='linear', alpha=None, gain=None, clamp=None):
+ """Fast CUDA implementation of `bias_act()` using custom ops.
+ """
+ # Parse arguments.
+ assert clamp is None or clamp >= 0
+ spec = activation_funcs[act]
+ alpha = float(alpha if alpha is not None else spec.def_alpha)
+ gain = float(gain if gain is not None else spec.def_gain)
+ clamp = float(clamp if clamp is not None else -1)
+
+ # Lookup from cache.
+ key = (dim, act, alpha, gain, clamp)
+ if key in _bias_act_cuda_cache:
+ return _bias_act_cuda_cache[key]
+
+ # Forward op.
+ class BiasActCuda(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, x, b): # pylint: disable=arguments-differ
+ ctx.memory_format = torch.channels_last if x.ndim > 2 and x.stride(1) == 1 else torch.contiguous_format
+ x = x.contiguous(memory_format=ctx.memory_format)
+ b = b.contiguous() if b is not None else _null_tensor
+ y = x
+ if act != 'linear' or gain != 1 or clamp >= 0 or b is not _null_tensor:
+ y = _plugin.bias_act(x, b, _null_tensor, _null_tensor, _null_tensor, 0, dim, spec.cuda_idx, alpha, gain, clamp)
+ ctx.save_for_backward(
+ x if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor,
+ b if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor,
+ y if 'y' in spec.ref else _null_tensor)
+ return y
+
+ @staticmethod
+ def backward(ctx, dy): # pylint: disable=arguments-differ
+ dy = dy.contiguous(memory_format=ctx.memory_format)
+ x, b, y = ctx.saved_tensors
+ dx = None
+ db = None
+
+ if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
+ dx = dy
+ if act != 'linear' or gain != 1 or clamp >= 0:
+ dx = BiasActCudaGrad.apply(dy, x, b, y)
+
+ if ctx.needs_input_grad[1]:
+ db = dx.sum([i for i in range(dx.ndim) if i != dim])
+
+ return dx, db
+
+ # Backward op.
+ class BiasActCudaGrad(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, dy, x, b, y): # pylint: disable=arguments-differ
+ ctx.memory_format = torch.channels_last if dy.ndim > 2 and dy.stride(1) == 1 else torch.contiguous_format
+ dx = _plugin.bias_act(dy, b, x, y, _null_tensor, 1, dim, spec.cuda_idx, alpha, gain, clamp)
+ ctx.save_for_backward(
+ dy if spec.has_2nd_grad else _null_tensor,
+ x, b, y)
+ return dx
+
+ @staticmethod
+ def backward(ctx, d_dx): # pylint: disable=arguments-differ
+ d_dx = d_dx.contiguous(memory_format=ctx.memory_format)
+ dy, x, b, y = ctx.saved_tensors
+ d_dy = None
+ d_x = None
+ d_b = None
+ d_y = None
+
+ if ctx.needs_input_grad[0]:
+ d_dy = BiasActCudaGrad.apply(d_dx, x, b, y)
+
+ if spec.has_2nd_grad and (ctx.needs_input_grad[1] or ctx.needs_input_grad[2]):
+ d_x = _plugin.bias_act(d_dx, b, x, y, dy, 2, dim, spec.cuda_idx, alpha, gain, clamp)
+
+ if spec.has_2nd_grad and ctx.needs_input_grad[2]:
+ d_b = d_x.sum([i for i in range(d_x.ndim) if i != dim])
+
+ return d_dy, d_x, d_b, d_y
+
+ # Add to cache.
+ _bias_act_cuda_cache[key] = BiasActCuda
+ return BiasActCuda
+
+#----------------------------------------------------------------------------
diff --git a/models/stylegan3/torch_utils/ops/conv2d_gradfix.py b/models/stylegan3/torch_utils/ops/conv2d_gradfix.py
new file mode 100644
index 0000000..156b6b2
--- /dev/null
+++ b/models/stylegan3/torch_utils/ops/conv2d_gradfix.py
@@ -0,0 +1,203 @@
+# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+"""Custom replacement for `torch.nn.functional.conv2d` that supports
+arbitrarily high order gradients with zero performance penalty."""
+
+import contextlib
+import torch
+from pkg_resources import parse_version
+
+# pylint: disable=redefined-builtin
+# pylint: disable=arguments-differ
+# pylint: disable=protected-access
+
+#----------------------------------------------------------------------------
+
+enabled = False # Enable the custom op by setting this to true.
+weight_gradients_disabled = False # Forcefully disable computation of gradients with respect to the weights.
+_use_pytorch_1_11_api = parse_version(torch.__version__) >= parse_version('1.11.0a') # Allow prerelease builds of 1.11
+
+@contextlib.contextmanager
+def no_weight_gradients(disable=True):
+ global weight_gradients_disabled
+ old = weight_gradients_disabled
+ if disable:
+ weight_gradients_disabled = True
+ yield
+ weight_gradients_disabled = old
+
+#----------------------------------------------------------------------------
+
+def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
+ if _should_use_custom_op(input):
+ return _conv2d_gradfix(transpose=False, weight_shape=weight.shape, stride=stride, padding=padding, output_padding=0, dilation=dilation, groups=groups).apply(input, weight, bias)
+ return torch.nn.functional.conv2d(input=input, weight=weight, bias=bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
+
+def conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1):
+ if _should_use_custom_op(input):
+ return _conv2d_gradfix(transpose=True, weight_shape=weight.shape, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation).apply(input, weight, bias)
+ return torch.nn.functional.conv_transpose2d(input=input, weight=weight, bias=bias, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation)
+
+#----------------------------------------------------------------------------
+
+def _should_use_custom_op(input):
+ assert isinstance(input, torch.Tensor)
+ if (not enabled) or (not torch.backends.cudnn.enabled):
+ return False
+ if _use_pytorch_1_11_api:
+ # The work-around code doesn't work on PyTorch 1.11.0 onwards
+ return False
+ if input.device.type != 'cuda':
+ return False
+ return True
+
+def _tuple_of_ints(xs, ndim):
+ xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim
+ assert len(xs) == ndim
+ assert all(isinstance(x, int) for x in xs)
+ return xs
+
+#----------------------------------------------------------------------------
+
+_conv2d_gradfix_cache = dict()
+_null_tensor = torch.empty([0])
+
+def _conv2d_gradfix(transpose, weight_shape, stride, padding, output_padding, dilation, groups):
+ # Parse arguments.
+ ndim = 2
+ weight_shape = tuple(weight_shape)
+ stride = _tuple_of_ints(stride, ndim)
+ padding = _tuple_of_ints(padding, ndim)
+ output_padding = _tuple_of_ints(output_padding, ndim)
+ dilation = _tuple_of_ints(dilation, ndim)
+
+ # Lookup from cache.
+ key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
+ if key in _conv2d_gradfix_cache:
+ return _conv2d_gradfix_cache[key]
+
+ # Validate arguments.
+ assert groups >= 1
+ assert len(weight_shape) == ndim + 2
+ assert all(stride[i] >= 1 for i in range(ndim))
+ assert all(padding[i] >= 0 for i in range(ndim))
+ assert all(dilation[i] >= 0 for i in range(ndim))
+ if not transpose:
+ assert all(output_padding[i] == 0 for i in range(ndim))
+ else: # transpose
+ assert all(0 <= output_padding[i] < max(stride[i], dilation[i]) for i in range(ndim))
+
+ # Helpers.
+ common_kwargs = dict(stride=stride, padding=padding, dilation=dilation, groups=groups)
+ def calc_output_padding(input_shape, output_shape):
+ if transpose:
+ return [0, 0]
+ return [
+ input_shape[i + 2]
+ - (output_shape[i + 2] - 1) * stride[i]
+ - (1 - 2 * padding[i])
+ - dilation[i] * (weight_shape[i + 2] - 1)
+ for i in range(ndim)
+ ]
+
+ # Forward & backward.
+ class Conv2d(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, input, weight, bias):
+ assert weight.shape == weight_shape
+ ctx.save_for_backward(
+ input if weight.requires_grad else _null_tensor,
+ weight if input.requires_grad else _null_tensor,
+ )
+ ctx.input_shape = input.shape
+
+ # Simple 1x1 convolution => cuBLAS (only on Volta, not on Ampere).
+ if weight_shape[2:] == stride == dilation == (1, 1) and padding == (0, 0) and torch.cuda.get_device_capability(input.device) < (8, 0):
+ a = weight.reshape(groups, weight_shape[0] // groups, weight_shape[1])
+ b = input.reshape(input.shape[0], groups, input.shape[1] // groups, -1)
+ c = (a.transpose(1, 2) if transpose else a) @ b.permute(1, 2, 0, 3).flatten(2)
+ c = c.reshape(-1, input.shape[0], *input.shape[2:]).transpose(0, 1)
+ c = c if bias is None else c + bias.unsqueeze(0).unsqueeze(2).unsqueeze(3)
+ return c.contiguous(memory_format=(torch.channels_last if input.stride(1) == 1 else torch.contiguous_format))
+
+ # General case => cuDNN.
+ if transpose:
+ return torch.nn.functional.conv_transpose2d(input=input, weight=weight, bias=bias, output_padding=output_padding, **common_kwargs)
+ return torch.nn.functional.conv2d(input=input, weight=weight, bias=bias, **common_kwargs)
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ input, weight = ctx.saved_tensors
+ input_shape = ctx.input_shape
+ grad_input = None
+ grad_weight = None
+ grad_bias = None
+
+ if ctx.needs_input_grad[0]:
+ p = calc_output_padding(input_shape=input_shape, output_shape=grad_output.shape)
+ op = _conv2d_gradfix(transpose=(not transpose), weight_shape=weight_shape, output_padding=p, **common_kwargs)
+ grad_input = op.apply(grad_output, weight, None)
+ assert grad_input.shape == input_shape
+
+ if ctx.needs_input_grad[1] and not weight_gradients_disabled:
+ grad_weight = Conv2dGradWeight.apply(grad_output, input)
+ assert grad_weight.shape == weight_shape
+
+ if ctx.needs_input_grad[2]:
+ grad_bias = grad_output.sum([0, 2, 3])
+
+ return grad_input, grad_weight, grad_bias
+
+ # Gradient with respect to the weights.
+ class Conv2dGradWeight(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, grad_output, input):
+ ctx.save_for_backward(
+ grad_output if input.requires_grad else _null_tensor,
+ input if grad_output.requires_grad else _null_tensor,
+ )
+ ctx.grad_output_shape = grad_output.shape
+ ctx.input_shape = input.shape
+
+ # Simple 1x1 convolution => cuBLAS (on both Volta and Ampere).
+ if weight_shape[2:] == stride == dilation == (1, 1) and padding == (0, 0):
+ a = grad_output.reshape(grad_output.shape[0], groups, grad_output.shape[1] // groups, -1).permute(1, 2, 0, 3).flatten(2)
+ b = input.reshape(input.shape[0], groups, input.shape[1] // groups, -1).permute(1, 2, 0, 3).flatten(2)
+ c = (b @ a.transpose(1, 2) if transpose else a @ b.transpose(1, 2)).reshape(weight_shape)
+ return c.contiguous(memory_format=(torch.channels_last if input.stride(1) == 1 else torch.contiguous_format))
+
+ # General case => cuDNN.
+ name = 'aten::cudnn_convolution_transpose_backward_weight' if transpose else 'aten::cudnn_convolution_backward_weight'
+ flags = [torch.backends.cudnn.benchmark, torch.backends.cudnn.deterministic, torch.backends.cudnn.allow_tf32]
+ return torch._C._jit_get_operation(name)(weight_shape, grad_output, input, padding, stride, dilation, groups, *flags)
+
+ @staticmethod
+ def backward(ctx, grad2_grad_weight):
+ grad_output, input = ctx.saved_tensors
+ grad_output_shape = ctx.grad_output_shape
+ input_shape = ctx.input_shape
+ grad2_grad_output = None
+ grad2_input = None
+
+ if ctx.needs_input_grad[0]:
+ grad2_grad_output = Conv2d.apply(input, grad2_grad_weight, None)
+ assert grad2_grad_output.shape == grad_output_shape
+
+ if ctx.needs_input_grad[1]:
+ p = calc_output_padding(input_shape=input_shape, output_shape=grad_output_shape)
+ op = _conv2d_gradfix(transpose=(not transpose), weight_shape=weight_shape, output_padding=p, **common_kwargs)
+ grad2_input = op.apply(grad_output, grad2_grad_weight, None)
+ assert grad2_input.shape == input_shape
+
+ return grad2_grad_output, grad2_input
+
+ _conv2d_gradfix_cache[key] = Conv2d
+ return Conv2d
+
+#----------------------------------------------------------------------------
diff --git a/models/stylegan3/torch_utils/ops/conv2d_resample.py b/models/stylegan3/torch_utils/ops/conv2d_resample.py
new file mode 100644
index 0000000..5eb5877
--- /dev/null
+++ b/models/stylegan3/torch_utils/ops/conv2d_resample.py
@@ -0,0 +1,143 @@
+# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+"""2D convolution with optional up/downsampling."""
+
+import torch
+
+from .. import misc
+from . import conv2d_gradfix
+from . import upfirdn2d
+from .upfirdn2d import _parse_padding
+from .upfirdn2d import _get_filter_size
+
+#----------------------------------------------------------------------------
+
+def _get_weight_shape(w):
+ with misc.suppress_tracer_warnings(): # this value will be treated as a constant
+ shape = [int(sz) for sz in w.shape]
+ misc.assert_shape(w, shape)
+ return shape
+
+#----------------------------------------------------------------------------
+
+def _conv2d_wrapper(x, w, stride=1, padding=0, groups=1, transpose=False, flip_weight=True):
+ """Wrapper for the underlying `conv2d()` and `conv_transpose2d()` implementations.
+ """
+ _out_channels, _in_channels_per_group, kh, kw = _get_weight_shape(w)
+
+ # Flip weight if requested.
+ # Note: conv2d() actually performs correlation (flip_weight=True) not convolution (flip_weight=False).
+ if not flip_weight and (kw > 1 or kh > 1):
+ w = w.flip([2, 3])
+
+ # Execute using conv2d_gradfix.
+ op = conv2d_gradfix.conv_transpose2d if transpose else conv2d_gradfix.conv2d
+ return op(x, w, stride=stride, padding=padding, groups=groups)
+
+#----------------------------------------------------------------------------
+
+@misc.profiled_function
+def conv2d_resample(x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight=True, flip_filter=False):
+ r"""2D convolution with optional up/downsampling.
+
+ Padding is performed only once at the beginning, not between the operations.
+
+ Args:
+ x: Input tensor of shape
+ `[batch_size, in_channels, in_height, in_width]`.
+ w: Weight tensor of shape
+ `[out_channels, in_channels//groups, kernel_height, kernel_width]`.
+ f: Low-pass filter for up/downsampling. Must be prepared beforehand by
+ calling upfirdn2d.setup_filter(). None = identity (default).
+ up: Integer upsampling factor (default: 1).
+ down: Integer downsampling factor (default: 1).
+ padding: Padding with respect to the upsampled image. Can be a single number
+ or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
+ (default: 0).
+ groups: Split input channels into N groups (default: 1).
+ flip_weight: False = convolution, True = correlation (default: True).
+ flip_filter: False = convolution, True = correlation (default: False).
+
+ Returns:
+ Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
+ """
+ # Validate arguments.
+ assert isinstance(x, torch.Tensor) and (x.ndim == 4)
+ assert isinstance(w, torch.Tensor) and (w.ndim == 4) and (w.dtype == x.dtype)
+ assert f is None or (isinstance(f, torch.Tensor) and f.ndim in [1, 2] and f.dtype == torch.float32)
+ assert isinstance(up, int) and (up >= 1)
+ assert isinstance(down, int) and (down >= 1)
+ assert isinstance(groups, int) and (groups >= 1)
+ out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w)
+ fw, fh = _get_filter_size(f)
+ px0, px1, py0, py1 = _parse_padding(padding)
+
+ # Adjust padding to account for up/downsampling.
+ if up > 1:
+ px0 += (fw + up - 1) // 2
+ px1 += (fw - up) // 2
+ py0 += (fh + up - 1) // 2
+ py1 += (fh - up) // 2
+ if down > 1:
+ px0 += (fw - down + 1) // 2
+ px1 += (fw - down) // 2
+ py0 += (fh - down + 1) // 2
+ py1 += (fh - down) // 2
+
+ # Fast path: 1x1 convolution with downsampling only => downsample first, then convolve.
+ if kw == 1 and kh == 1 and (down > 1 and up == 1):
+ x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, padding=[px0,px1,py0,py1], flip_filter=flip_filter)
+ x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
+ return x
+
+ # Fast path: 1x1 convolution with upsampling only => convolve first, then upsample.
+ if kw == 1 and kh == 1 and (up > 1 and down == 1):
+ x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
+ x = upfirdn2d.upfirdn2d(x=x, f=f, up=up, padding=[px0,px1,py0,py1], gain=up**2, flip_filter=flip_filter)
+ return x
+
+ # Fast path: downsampling only => use strided convolution.
+ if down > 1 and up == 1:
+ x = upfirdn2d.upfirdn2d(x=x, f=f, padding=[px0,px1,py0,py1], flip_filter=flip_filter)
+ x = _conv2d_wrapper(x=x, w=w, stride=down, groups=groups, flip_weight=flip_weight)
+ return x
+
+ # Fast path: upsampling with optional downsampling => use transpose strided convolution.
+ if up > 1:
+ if groups == 1:
+ w = w.transpose(0, 1)
+ else:
+ w = w.reshape(groups, out_channels // groups, in_channels_per_group, kh, kw)
+ w = w.transpose(1, 2)
+ w = w.reshape(groups * in_channels_per_group, out_channels // groups, kh, kw)
+ px0 -= kw - 1
+ px1 -= kw - up
+ py0 -= kh - 1
+ py1 -= kh - up
+ pxt = max(min(-px0, -px1), 0)
+ pyt = max(min(-py0, -py1), 0)
+ x = _conv2d_wrapper(x=x, w=w, stride=up, padding=[pyt,pxt], groups=groups, transpose=True, flip_weight=(not flip_weight))
+ x = upfirdn2d.upfirdn2d(x=x, f=f, padding=[px0+pxt,px1+pxt,py0+pyt,py1+pyt], gain=up**2, flip_filter=flip_filter)
+ if down > 1:
+ x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter)
+ return x
+
+ # Fast path: no up/downsampling, padding supported by the underlying implementation => use plain conv2d.
+ if up == 1 and down == 1:
+ if px0 == px1 and py0 == py1 and px0 >= 0 and py0 >= 0:
+ return _conv2d_wrapper(x=x, w=w, padding=[py0,px0], groups=groups, flip_weight=flip_weight)
+
+ # Fallback: Generic reference implementation.
+ x = upfirdn2d.upfirdn2d(x=x, f=(f if up > 1 else None), up=up, padding=[px0,px1,py0,py1], gain=up**2, flip_filter=flip_filter)
+ x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
+ if down > 1:
+ x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter)
+ return x
+
+#----------------------------------------------------------------------------
diff --git a/models/stylegan3/torch_utils/ops/filtered_lrelu.cpp b/models/stylegan3/torch_utils/ops/filtered_lrelu.cpp
new file mode 100644
index 0000000..ff4149b
--- /dev/null
+++ b/models/stylegan3/torch_utils/ops/filtered_lrelu.cpp
@@ -0,0 +1,300 @@
+// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include
+#include
+#include
+#include "filtered_lrelu.h"
+
+//------------------------------------------------------------------------
+
+static std::tuple filtered_lrelu(
+ torch::Tensor x, torch::Tensor fu, torch::Tensor fd, torch::Tensor b, torch::Tensor si,
+ int up, int down, int px0, int px1, int py0, int py1, int sx, int sy, float gain, float slope, float clamp, bool flip_filters, bool writeSigns)
+{
+ // Set CUDA device.
+ TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
+
+ // Validate arguments.
+ TORCH_CHECK(fu.device() == x.device() && fd.device() == x.device() && b.device() == x.device(), "all input tensors must reside on the same device");
+ TORCH_CHECK(fu.dtype() == torch::kFloat && fd.dtype() == torch::kFloat, "fu and fd must be float32");
+ TORCH_CHECK(b.dtype() == x.dtype(), "x and b must have the same dtype");
+ TORCH_CHECK(x.dtype() == torch::kHalf || x.dtype() == torch::kFloat, "x and b must be float16 or float32");
+ TORCH_CHECK(x.dim() == 4, "x must be rank 4");
+ TORCH_CHECK(x.size(0) * x.size(1) <= INT_MAX && x.size(2) <= INT_MAX && x.size(3) <= INT_MAX, "x is too large");
+ TORCH_CHECK(x.numel() > 0, "x is empty");
+ TORCH_CHECK((fu.dim() == 1 || fu.dim() == 2) && (fd.dim() == 1 || fd.dim() == 2), "fu and fd must be rank 1 or 2");
+ TORCH_CHECK(fu.size(0) <= INT_MAX && fu.size(-1) <= INT_MAX, "fu is too large");
+ TORCH_CHECK(fd.size(0) <= INT_MAX && fd.size(-1) <= INT_MAX, "fd is too large");
+ TORCH_CHECK(fu.numel() > 0, "fu is empty");
+ TORCH_CHECK(fd.numel() > 0, "fd is empty");
+ TORCH_CHECK(b.dim() == 1 && b.size(0) == x.size(1), "b must be a vector with the same number of channels as x");
+ TORCH_CHECK(up >= 1 && down >= 1, "up and down must be at least 1");
+
+ // Figure out how much shared memory is available on the device.
+ int maxSharedBytes = 0;
+ AT_CUDA_CHECK(cudaDeviceGetAttribute(&maxSharedBytes, cudaDevAttrMaxSharedMemoryPerBlockOptin, x.device().index()));
+ int sharedKB = maxSharedBytes >> 10;
+
+ // Populate enough launch parameters to check if a CUDA kernel exists.
+ filtered_lrelu_kernel_params p;
+ p.up = up;
+ p.down = down;
+ p.fuShape = make_int2((int)fu.size(-1), fu.dim() == 2 ? (int)fu.size(0) : 0); // shape [n, 0] indicates separable filter.
+ p.fdShape = make_int2((int)fd.size(-1), fd.dim() == 2 ? (int)fd.size(0) : 0);
+ filtered_lrelu_kernel_spec test_spec = choose_filtered_lrelu_kernel(p, sharedKB);
+ if (!test_spec.exec)
+ {
+ // No kernel found - return empty tensors and indicate missing kernel with return code of -1.
+ return std::make_tuple(torch::Tensor(), torch::Tensor(), -1);
+ }
+
+ // Input/output element size.
+ int64_t sz = (x.dtype() == torch::kHalf) ? 2 : 4;
+
+ // Input sizes.
+ int64_t xw = (int)x.size(3);
+ int64_t xh = (int)x.size(2);
+ int64_t fut_w = (int)fu.size(-1) - 1;
+ int64_t fut_h = (int)fu.size(0) - 1;
+ int64_t fdt_w = (int)fd.size(-1) - 1;
+ int64_t fdt_h = (int)fd.size(0) - 1;
+
+ // Logical size of upsampled buffer.
+ int64_t cw = xw * up + (px0 + px1) - fut_w;
+ int64_t ch = xh * up + (py0 + py1) - fut_h;
+ TORCH_CHECK(cw > fdt_w && ch > fdt_h, "upsampled buffer must be at least the size of downsampling filter");
+ TORCH_CHECK(cw <= INT_MAX && ch <= INT_MAX, "upsampled buffer is too large");
+
+ // Compute output size and allocate.
+ int64_t yw = (cw - fdt_w + (down - 1)) / down;
+ int64_t yh = (ch - fdt_h + (down - 1)) / down;
+ TORCH_CHECK(yw > 0 && yh > 0, "output must be at least 1x1");
+ TORCH_CHECK(yw <= INT_MAX && yh <= INT_MAX, "output is too large");
+ torch::Tensor y = torch::empty({x.size(0), x.size(1), yh, yw}, x.options(), x.suggest_memory_format());
+
+ // Allocate sign tensor.
+ torch::Tensor so;
+ torch::Tensor s = si;
+ bool readSigns = !!s.numel();
+ int64_t sw_active = 0; // Active width of sign tensor.
+ if (writeSigns)
+ {
+ sw_active = yw * down - (down - 1) + fdt_w; // Active width in elements.
+ int64_t sh = yh * down - (down - 1) + fdt_h; // Height = active height.
+ int64_t sw = (sw_active + 15) & ~15; // Width = active width in elements, rounded up to multiple of 16.
+ TORCH_CHECK(sh <= INT_MAX && (sw >> 2) <= INT_MAX, "signs is too large");
+ s = so = torch::empty({x.size(0), x.size(1), sh, sw >> 2}, x.options().dtype(torch::kUInt8), at::MemoryFormat::Contiguous);
+ }
+ else if (readSigns)
+ sw_active = s.size(3) << 2;
+
+ // Validate sign tensor if in use.
+ if (readSigns || writeSigns)
+ {
+ TORCH_CHECK(s.is_contiguous(), "signs must be contiguous");
+ TORCH_CHECK(s.dtype() == torch::kUInt8, "signs must be uint8");
+ TORCH_CHECK(s.device() == x.device(), "signs must reside on the same device as x");
+ TORCH_CHECK(s.dim() == 4, "signs must be rank 4");
+ TORCH_CHECK(s.size(0) == x.size(0) && s.size(1) == x.size(1), "signs must have same batch & channels as x");
+ TORCH_CHECK(s.size(2) <= INT_MAX && s.size(3) <= INT_MAX, "signs is too large");
+ }
+
+ // Populate rest of CUDA kernel parameters.
+ p.x = x.data_ptr();
+ p.y = y.data_ptr();
+ p.b = b.data_ptr();
+ p.s = (readSigns || writeSigns) ? s.data_ptr() : 0;
+ p.fu = fu.data_ptr();
+ p.fd = fd.data_ptr();
+ p.pad0 = make_int2(px0, py0);
+ p.gain = gain;
+ p.slope = slope;
+ p.clamp = clamp;
+ p.flip = (flip_filters) ? 1 : 0;
+ p.xShape = make_int4((int)x.size(3), (int)x.size(2), (int)x.size(1), (int)x.size(0));
+ p.yShape = make_int4((int)y.size(3), (int)y.size(2), (int)y.size(1), (int)y.size(0));
+ p.sShape = (readSigns || writeSigns) ? make_int2((int)s.size(3), (int)s.size(2)) : make_int2(0, 0); // Width is in bytes. Contiguous.
+ p.sOfs = make_int2(sx, sy);
+ p.swLimit = (sw_active + 3) >> 2; // Rounded up to bytes.
+
+ // x, y, b strides are in bytes.
+ p.xStride = make_longlong4(sz * x.stride(3), sz * x.stride(2), sz * x.stride(1), sz * x.stride(0));
+ p.yStride = make_longlong4(sz * y.stride(3), sz * y.stride(2), sz * y.stride(1), sz * y.stride(0));
+ p.bStride = sz * b.stride(0);
+
+ // fu, fd strides are in elements.
+ p.fuStride = make_longlong3(fu.stride(-1), fu.dim() == 2 ? fu.stride(0) : 0, 0);
+ p.fdStride = make_longlong3(fd.stride(-1), fd.dim() == 2 ? fd.stride(0) : 0, 0);
+
+ // Determine if indices don't fit in int32. Support negative strides although Torch currently never produces those.
+ bool index64b = false;
+ if (std::abs(p.bStride * x.size(1)) > INT_MAX) index64b = true;
+ if (std::min(x.size(0) * p.xStride.w, 0ll) + std::min(x.size(1) * p.xStride.z, 0ll) + std::min(x.size(2) * p.xStride.y, 0ll) + std::min(x.size(3) * p.xStride.x, 0ll) < -INT_MAX) index64b = true;
+ if (std::max(x.size(0) * p.xStride.w, 0ll) + std::max(x.size(1) * p.xStride.z, 0ll) + std::max(x.size(2) * p.xStride.y, 0ll) + std::max(x.size(3) * p.xStride.x, 0ll) > INT_MAX) index64b = true;
+ if (std::min(y.size(0) * p.yStride.w, 0ll) + std::min(y.size(1) * p.yStride.z, 0ll) + std::min(y.size(2) * p.yStride.y, 0ll) + std::min(y.size(3) * p.yStride.x, 0ll) < -INT_MAX) index64b = true;
+ if (std::max(y.size(0) * p.yStride.w, 0ll) + std::max(y.size(1) * p.yStride.z, 0ll) + std::max(y.size(2) * p.yStride.y, 0ll) + std::max(y.size(3) * p.yStride.x, 0ll) > INT_MAX) index64b = true;
+ if (s.numel() > INT_MAX) index64b = true;
+
+ // Choose CUDA kernel.
+ filtered_lrelu_kernel_spec spec = { 0 };
+ AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "filtered_lrelu_cuda", [&]
+ {
+ if constexpr (sizeof(scalar_t) <= 4) // Exclude doubles. constexpr prevents template instantiation.
+ {
+ // Choose kernel based on index type, datatype and sign read/write modes.
+ if (!index64b && writeSigns && !readSigns) spec = choose_filtered_lrelu_kernel(p, sharedKB);
+ else if (!index64b && !writeSigns && readSigns) spec = choose_filtered_lrelu_kernel(p, sharedKB);
+ else if (!index64b && !writeSigns && !readSigns) spec = choose_filtered_lrelu_kernel(p, sharedKB);
+ else if ( index64b && writeSigns && !readSigns) spec = choose_filtered_lrelu_kernel(p, sharedKB);
+ else if ( index64b && !writeSigns && readSigns) spec = choose_filtered_lrelu_kernel(p, sharedKB);
+ else if ( index64b && !writeSigns && !readSigns) spec = choose_filtered_lrelu_kernel(p, sharedKB);
+ }
+ });
+ TORCH_CHECK(spec.exec, "internal error - CUDA kernel not found") // This should not happen because we tested earlier that kernel exists.
+
+ // Launch CUDA kernel.
+ void* args[] = {&p};
+ int bx = spec.numWarps * 32;
+ int gx = (p.yShape.x - 1) / spec.tileOut.x + 1;
+ int gy = (p.yShape.y - 1) / spec.tileOut.y + 1;
+ int gz = p.yShape.z * p.yShape.w;
+
+ // Repeat multiple horizontal tiles in a CTA?
+ if (spec.xrep)
+ {
+ p.tilesXrep = spec.xrep;
+ p.tilesXdim = gx;
+
+ gx = (gx + p.tilesXrep - 1) / p.tilesXrep;
+ std::swap(gx, gy);
+ }
+ else
+ {
+ p.tilesXrep = 0;
+ p.tilesXdim = 0;
+ }
+
+ // Launch filter setup kernel.
+ AT_CUDA_CHECK(cudaLaunchKernel(spec.setup, 1, 1024, args, 0, at::cuda::getCurrentCUDAStream()));
+
+ // Copy kernels to constant memory.
+ if ( writeSigns && !readSigns) AT_CUDA_CHECK((copy_filters(at::cuda::getCurrentCUDAStream())));
+ else if (!writeSigns && readSigns) AT_CUDA_CHECK((copy_filters(at::cuda::getCurrentCUDAStream())));
+ else if (!writeSigns && !readSigns) AT_CUDA_CHECK((copy_filters(at::cuda::getCurrentCUDAStream())));
+
+ // Set cache and shared memory configurations for main kernel.
+ AT_CUDA_CHECK(cudaFuncSetCacheConfig(spec.exec, cudaFuncCachePreferShared));
+ if (spec.dynamicSharedKB) // Need dynamically allocated shared memory?
+ AT_CUDA_CHECK(cudaFuncSetAttribute(spec.exec, cudaFuncAttributeMaxDynamicSharedMemorySize, spec.dynamicSharedKB << 10));
+ AT_CUDA_CHECK(cudaFuncSetSharedMemConfig(spec.exec, cudaSharedMemBankSizeFourByte));
+
+ // Launch main kernel.
+ const int maxSubGz = 65535; // CUDA maximum for block z dimension.
+ for (int zofs=0; zofs < gz; zofs += maxSubGz) // Do multiple launches if gz is too big.
+ {
+ p.blockZofs = zofs;
+ int subGz = std::min(maxSubGz, gz - zofs);
+ AT_CUDA_CHECK(cudaLaunchKernel(spec.exec, dim3(gx, gy, subGz), bx, args, spec.dynamicSharedKB << 10, at::cuda::getCurrentCUDAStream()));
+ }
+
+ // Done.
+ return std::make_tuple(y, so, 0);
+}
+
+//------------------------------------------------------------------------
+
+static torch::Tensor filtered_lrelu_act(torch::Tensor x, torch::Tensor si, int sx, int sy, float gain, float slope, float clamp, bool writeSigns)
+{
+ // Set CUDA device.
+ TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
+
+ // Validate arguments.
+ TORCH_CHECK(x.dim() == 4, "x must be rank 4");
+ TORCH_CHECK(x.size(0) * x.size(1) <= INT_MAX && x.size(2) <= INT_MAX && x.size(3) <= INT_MAX, "x is too large");
+ TORCH_CHECK(x.numel() > 0, "x is empty");
+ TORCH_CHECK(x.dtype() == torch::kHalf || x.dtype() == torch::kFloat || x.dtype() == torch::kDouble, "x must be float16, float32 or float64");
+
+ // Output signs if we don't have sign input.
+ torch::Tensor so;
+ torch::Tensor s = si;
+ bool readSigns = !!s.numel();
+ if (writeSigns)
+ {
+ int64_t sw = x.size(3);
+ sw = (sw + 15) & ~15; // Round to a multiple of 16 for coalescing.
+ s = so = torch::empty({x.size(0), x.size(1), x.size(2), sw >> 2}, x.options().dtype(torch::kUInt8), at::MemoryFormat::Contiguous);
+ }
+
+ // Validate sign tensor if in use.
+ if (readSigns || writeSigns)
+ {
+ TORCH_CHECK(s.is_contiguous(), "signs must be contiguous");
+ TORCH_CHECK(s.dtype() == torch::kUInt8, "signs must be uint8");
+ TORCH_CHECK(s.device() == x.device(), "signs must reside on the same device as x");
+ TORCH_CHECK(s.dim() == 4, "signs must be rank 4");
+ TORCH_CHECK(s.size(0) == x.size(0) && s.size(1) == x.size(1), "signs must have same batch & channels as x");
+ TORCH_CHECK(s.size(2) <= INT_MAX && (s.size(3) << 2) <= INT_MAX, "signs tensor is too large");
+ }
+
+ // Initialize CUDA kernel parameters.
+ filtered_lrelu_act_kernel_params p;
+ p.x = x.data_ptr();
+ p.s = (readSigns || writeSigns) ? s.data_ptr() : 0;
+ p.gain = gain;
+ p.slope = slope;
+ p.clamp = clamp;
+ p.xShape = make_int4((int)x.size(3), (int)x.size(2), (int)x.size(1), (int)x.size(0));
+ p.xStride = make_longlong4(x.stride(3), x.stride(2), x.stride(1), x.stride(0));
+ p.sShape = (readSigns || writeSigns) ? make_int2((int)s.size(3) << 2, (int)s.size(2)) : make_int2(0, 0); // Width is in elements. Contiguous.
+ p.sOfs = make_int2(sx, sy);
+
+ // Choose CUDA kernel.
+ void* func = 0;
+ AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "filtered_lrelu_act_cuda", [&]
+ {
+ if (writeSigns)
+ func = choose_filtered_lrelu_act_kernel();
+ else if (readSigns)
+ func = choose_filtered_lrelu_act_kernel();
+ else
+ func = choose_filtered_lrelu_act_kernel();
+ });
+ TORCH_CHECK(func, "internal error - CUDA kernel not found");
+
+ // Launch CUDA kernel.
+ void* args[] = {&p};
+ int bx = 128; // 4 warps per block.
+
+ // Logical size of launch = writeSigns ? p.s : p.x
+ uint32_t gx = writeSigns ? p.sShape.x : p.xShape.x;
+ uint32_t gy = writeSigns ? p.sShape.y : p.xShape.y;
+ uint32_t gz = p.xShape.z * p.xShape.w; // Same as in p.sShape if signs are in use.
+ gx = (gx - 1) / bx + 1;
+
+ // Make sure grid y and z dimensions are within CUDA launch limits. Kernel loops internally to do the rest.
+ const uint32_t gmax = 65535;
+ gy = std::min(gy, gmax);
+ gz = std::min(gz, gmax);
+
+ // Launch.
+ AT_CUDA_CHECK(cudaLaunchKernel(func, dim3(gx, gy, gz), bx, args, 0, at::cuda::getCurrentCUDAStream()));
+ return so;
+}
+
+//------------------------------------------------------------------------
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
+{
+ m.def("filtered_lrelu", &filtered_lrelu); // The whole thing.
+ m.def("filtered_lrelu_act_", &filtered_lrelu_act); // Activation and sign tensor handling only. Modifies data tensor in-place.
+}
+
+//------------------------------------------------------------------------
diff --git a/models/stylegan3/torch_utils/ops/filtered_lrelu.cu b/models/stylegan3/torch_utils/ops/filtered_lrelu.cu
new file mode 100644
index 0000000..8e6f47f
--- /dev/null
+++ b/models/stylegan3/torch_utils/ops/filtered_lrelu.cu
@@ -0,0 +1,1284 @@
+// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include
+#include "filtered_lrelu.h"
+#include
+
+//------------------------------------------------------------------------
+// Helpers.
+
+enum // Filter modes.
+{
+ MODE_SUSD = 0, // Separable upsampling, separable downsampling.
+ MODE_FUSD = 1, // Full upsampling, separable downsampling.
+ MODE_SUFD = 2, // Separable upsampling, full downsampling.
+ MODE_FUFD = 3, // Full upsampling, full downsampling.
+};
+
+template struct InternalType;
+template <> struct InternalType
+{
+ typedef double scalar_t; typedef double2 vec2_t; typedef double4 vec4_t;
+ __device__ __forceinline__ static vec2_t zero_vec2(void) { return make_double2(0, 0); }
+ __device__ __forceinline__ static vec4_t zero_vec4(void) { return make_double4(0, 0, 0, 0); }
+ __device__ __forceinline__ static double clamp(double x, double c) { return fmin(fmax(x, -c), c); }
+};
+template <> struct InternalType
+{
+ typedef float scalar_t; typedef float2 vec2_t; typedef float4 vec4_t;
+ __device__ __forceinline__ static vec2_t zero_vec2(void) { return make_float2(0, 0); }
+ __device__ __forceinline__ static vec4_t zero_vec4(void) { return make_float4(0, 0, 0, 0); }
+ __device__ __forceinline__ static float clamp(float x, float c) { return fminf(fmaxf(x, -c), c); }
+};
+template <> struct InternalType
+{
+ typedef float scalar_t; typedef float2 vec2_t; typedef float4 vec4_t;
+ __device__ __forceinline__ static vec2_t zero_vec2(void) { return make_float2(0, 0); }
+ __device__ __forceinline__ static vec4_t zero_vec4(void) { return make_float4(0, 0, 0, 0); }
+ __device__ __forceinline__ static float clamp(float x, float c) { return fminf(fmaxf(x, -c), c); }
+};
+
+#define MIN(A, B) ((A) < (B) ? (A) : (B))
+#define MAX(A, B) ((A) > (B) ? (A) : (B))
+#define CEIL_DIV(A, B) (((B)==1) ? (A) : \
+ ((B)==2) ? ((int)((A)+1) >> 1) : \
+ ((B)==4) ? ((int)((A)+3) >> 2) : \
+ (((A) + ((A) > 0 ? (B) - 1 : 0)) / (B)))
+
+// This works only up to blocks of size 256 x 256 and for all N that are powers of two.
+template __device__ __forceinline__ void fast_div_mod(int& x, int& y, unsigned int i)
+{
+ if ((N & (N-1)) && N <= 256)
+ y = (i * ((1<<24)/N + 1)) >> 24; // Assumes N <= 256, i < N*256.
+ else
+ y = i/N;
+
+ x = i - y*N;
+}
+
+// Type cast stride before reading it.
+template __device__ __forceinline__ T get_stride(const int64_t& x)
+{
+ return *reinterpret_cast(&x);
+}
+
+//------------------------------------------------------------------------
+// Filters, setup kernel, copying function.
+
+#define MAX_FILTER_SIZE 32
+
+// Combined up/down filter buffers so that transfer can be done with one copy.
+__device__ float g_fbuf[2 * MAX_FILTER_SIZE * MAX_FILTER_SIZE]; // Filters in global memory, written by setup kernel.
+__device__ __constant__ float c_fbuf[2 * MAX_FILTER_SIZE * MAX_FILTER_SIZE]; // Filters in constant memory, read by main kernel.
+
+// Accessors to combined buffers to index up/down filters individually.
+#define c_fu (c_fbuf)
+#define c_fd (c_fbuf + MAX_FILTER_SIZE * MAX_FILTER_SIZE)
+#define g_fu (g_fbuf)
+#define g_fd (g_fbuf + MAX_FILTER_SIZE * MAX_FILTER_SIZE)
+
+// Set up filters into global memory buffer.
+static __global__ void setup_filters_kernel(filtered_lrelu_kernel_params p)
+{
+ for (int idx = threadIdx.x; idx < MAX_FILTER_SIZE * MAX_FILTER_SIZE; idx += blockDim.x)
+ {
+ int x, y;
+ fast_div_mod(x, y, idx);
+
+ int fu_x = p.flip ? x : (p.fuShape.x - 1 - x);
+ int fu_y = p.flip ? y : (p.fuShape.y - 1 - y);
+ if (p.fuShape.y > 0)
+ g_fu[idx] = (x >= p.fuShape.x || y >= p.fuShape.y) ? 0.0f : p.fu[fu_x * p.fuStride.x + fu_y * p.fuStride.y];
+ else
+ g_fu[idx] = (x >= p.fuShape.x || y > 0) ? 0.0f : p.fu[fu_x * p.fuStride.x];
+
+ int fd_x = p.flip ? x : (p.fdShape.x - 1 - x);
+ int fd_y = p.flip ? y : (p.fdShape.y - 1 - y);
+ if (p.fdShape.y > 0)
+ g_fd[idx] = (x >= p.fdShape.x || y >= p.fdShape.y) ? 0.0f : p.fd[fd_x * p.fdStride.x + fd_y * p.fdStride.y];
+ else
+ g_fd[idx] = (x >= p.fdShape.x || y > 0) ? 0.0f : p.fd[fd_x * p.fdStride.x];
+ }
+}
+
+// Host function to copy filters written by setup kernel into constant buffer for main kernel.
+template static cudaError_t copy_filters(cudaStream_t stream)
+{
+ void* src = 0;
+ cudaError_t err = cudaGetSymbolAddress(&src, g_fbuf);
+ if (err) return err;
+ return cudaMemcpyToSymbolAsync(c_fbuf, src, 2 * MAX_FILTER_SIZE * MAX_FILTER_SIZE * sizeof(float), 0, cudaMemcpyDeviceToDevice, stream);
+}
+
+//------------------------------------------------------------------------
+// Coordinate spaces:
+// - Relative to input tensor: inX, inY, tileInX, tileInY
+// - Relative to input tile: relInX, relInY, tileInW, tileInH
+// - Relative to upsampled tile: relUpX, relUpY, tileUpW, tileUpH
+// - Relative to output tile: relOutX, relOutY, tileOutW, tileOutH
+// - Relative to output tensor: outX, outY, tileOutX, tileOutY
+//
+// Relationships between coordinate spaces:
+// - inX = tileInX + relInX
+// - inY = tileInY + relInY
+// - relUpX = relInX * up + phaseInX
+// - relUpY = relInY * up + phaseInY
+// - relUpX = relOutX * down
+// - relUpY = relOutY * down
+// - outX = tileOutX + relOutX
+// - outY = tileOutY + relOutY
+
+extern __shared__ char s_buf_raw[]; // When sharedKB <= 48, allocate shared memory statically inside the kernel, otherwise use the externally allocated shared memory buffer.
+
+template
+static __global__ void filtered_lrelu_kernel(filtered_lrelu_kernel_params p)
+{
+ // Check that we don't try to support non-existing filter modes.
+ static_assert(up == 1 || up == 2 || up == 4, "only up=1, up=2, up=4 scales supported");
+ static_assert(down == 1 || down == 2 || down == 4, "only down=1, down=2, down=4 scales supported");
+ static_assert(fuSize >= up, "upsampling filter size must be at least upsampling factor");
+ static_assert(fdSize >= down, "downsampling filter size must be at least downsampling factor");
+ static_assert(fuSize % up == 0, "upsampling filter size must be divisible with upsampling factor");
+ static_assert(fdSize % down == 0, "downsampling filter size must be divisible with downsampling factor");
+ static_assert(fuSize <= MAX_FILTER_SIZE && fdSize <= MAX_FILTER_SIZE, "filter size greater than MAX_FILTER_SIZE");
+ static_assert(up != 1 || (fuSize == 1 && (filterMode == MODE_FUFD || filterMode == MODE_FUSD)), "up=1 supported only for 1x1 full filters");
+ static_assert(down != 1 || (fdSize == 1 && (filterMode == MODE_FUFD || filterMode == MODE_SUFD)), "down=1 supported only for 1x1 full filters");
+ static_assert(!(up == 4 && (filterMode == MODE_FUFD || filterMode == MODE_FUSD)), "full filters not supported for up=4");
+ static_assert(!(down == 4 && (filterMode == MODE_FUFD || filterMode == MODE_SUFD)), "full filters not supported for down=4");
+
+ // Static definitions.
+ typedef typename InternalType::scalar_t scalar_t;
+ typedef typename InternalType::vec2_t vec2_t;
+ typedef typename InternalType::vec4_t vec4_t;
+ const int tileUpW = (tileOutW * down + (fdSize - 1) - (down - 1) + 3) & ~3; // Upsampled tile width, rounded up to multiple of 4.
+ const int tileUpH = tileOutH * down + (fdSize - 1) - (down - 1); // Upsampled tile height.
+ const int tileInW = CEIL_DIV(tileUpW + (fuSize - 1), up); // Input tile width.
+ const int tileInH = CEIL_DIV(tileUpH + (fuSize - 1), up); // Input tile height.
+ const int tileUpH_up = CEIL_DIV(tileUpH, up) * up; // Upsampled tile height rounded up to a multiple of up.
+ const int tileInH_up = CEIL_DIV(tileUpH_up + (fuSize - 1), up); // For allocations only, to avoid shared memory read overruns with up=2 and up=4.
+
+ // Merge 1x1 downsampling into last upsampling step for upf1 and ups2.
+ const bool downInline = (down == 1) && ((up == 1 && filterMode == MODE_FUFD) || (up == 2 && filterMode == MODE_SUFD));
+
+ // Sizes of logical buffers.
+ const int szIn = tileInH_up * tileInW;
+ const int szUpX = tileInH_up * tileUpW;
+ const int szUpXY = downInline ? 0 : (tileUpH * tileUpW);
+ const int szDownX = tileUpH * tileOutW;
+
+ // Sizes for shared memory arrays.
+ const int s_buf0_size_base =
+ (filterMode == MODE_SUSD) ? MAX(szIn, szUpXY) :
+ (filterMode == MODE_FUSD) ? MAX(szIn, szDownX) :
+ (filterMode == MODE_SUFD) ? MAX(szIn, szUpXY) :
+ (filterMode == MODE_FUFD) ? szIn :
+ -1;
+ const int s_buf1_size_base =
+ (filterMode == MODE_SUSD) ? MAX(szUpX, szDownX) :
+ (filterMode == MODE_FUSD) ? szUpXY :
+ (filterMode == MODE_SUFD) ? szUpX :
+ (filterMode == MODE_FUFD) ? szUpXY :
+ -1;
+
+ // Ensure U128 alignment.
+ const int s_buf0_size = (s_buf0_size_base + 3) & ~3;
+ const int s_buf1_size = (s_buf1_size_base + 3) & ~3;
+
+ // Check at compile time that we don't use too much shared memory.
+ static_assert((s_buf0_size + s_buf1_size) * sizeof(scalar_t) <= (sharedKB << 10), "shared memory overflow");
+
+ // Declare shared memory arrays.
+ scalar_t* s_buf0;
+ scalar_t* s_buf1;
+ if (sharedKB <= 48)
+ {
+ // Allocate shared memory arrays here.
+ __shared__ scalar_t s_buf0_st[(sharedKB > 48) ? (1<<24) : (s_buf0_size + s_buf1_size)]; // Prevent launching if this isn't optimized away when unused.
+ s_buf0 = s_buf0_st;
+ s_buf1 = s_buf0 + s_buf0_size;
+ }
+ else
+ {
+ // Use the dynamically allocated shared memory array.
+ s_buf0 = (scalar_t*)s_buf_raw;
+ s_buf1 = s_buf0 + s_buf0_size;
+ }
+
+ // Pointers to the buffers.
+ scalar_t* s_tileIn; // Input tile: [relInX * tileInH + relInY]
+ scalar_t* s_tileUpX; // After horizontal upsampling: [relInY * tileUpW + relUpX]
+ scalar_t* s_tileUpXY; // After upsampling: [relUpY * tileUpW + relUpX]
+ scalar_t* s_tileDownX; // After horizontal downsampling: [relUpY * tileOutW + relOutX]
+ if (filterMode == MODE_SUSD)
+ {
+ s_tileIn = s_buf0;
+ s_tileUpX = s_buf1;
+ s_tileUpXY = s_buf0;
+ s_tileDownX = s_buf1;
+ }
+ else if (filterMode == MODE_FUSD)
+ {
+ s_tileIn = s_buf0;
+ s_tileUpXY = s_buf1;
+ s_tileDownX = s_buf0;
+ }
+ else if (filterMode == MODE_SUFD)
+ {
+ s_tileIn = s_buf0;
+ s_tileUpX = s_buf1;
+ s_tileUpXY = s_buf0;
+ }
+ else if (filterMode == MODE_FUFD)
+ {
+ s_tileIn = s_buf0;
+ s_tileUpXY = s_buf1;
+ }
+
+ // Allow large grids in z direction via per-launch offset.
+ int channelIdx = blockIdx.z + p.blockZofs;
+ int batchIdx = channelIdx / p.yShape.z;
+ channelIdx -= batchIdx * p.yShape.z;
+
+ // Offset to output feature map. In bytes.
+ index_t mapOfsOut = channelIdx * get_stride(p.yStride.z) + batchIdx * get_stride(p.yStride.w);
+
+ // Sign shift amount.
+ uint32_t signXo = ((threadIdx.x + p.sOfs.x) << 1) & 6;
+
+ // Inner tile loop.
+ #pragma unroll 1
+ for (int tileIdx = 0; !enableXrep || (tileIdx < MIN(p.tilesXrep, p.tilesXdim - p.tilesXrep * blockIdx.y)); tileIdx++)
+ {
+ // Locate output tile.
+ int tileX = enableXrep ? blockIdx.y * p.tilesXrep + tileIdx : blockIdx.x;
+ int tileOutX = tileX * tileOutW;
+ int tileOutY = (enableXrep ? blockIdx.x : blockIdx.y) * tileOutH;
+
+ // Locate input tile.
+ int tmpX = tileOutX * down - p.pad0.x;
+ int tmpY = tileOutY * down - p.pad0.y;
+ int tileInX = CEIL_DIV(tmpX, up);
+ int tileInY = CEIL_DIV(tmpY, up);
+ const int phaseInX = tileInX * up - tmpX;
+ const int phaseInY = tileInY * up - tmpY;
+
+ // Extra sync if input and output buffers are the same and we are not on first tile.
+ if (enableXrep && tileIdx > 0 && (filterMode == MODE_FUSD || (filterMode == MODE_SUFD && !downInline) || (filterMode == MODE_FUFD && downInline)))
+ __syncthreads();
+
+ // Load input tile & apply bias. Unrolled.
+ scalar_t b = (scalar_t)*(const T*)((const char*)p.b + (channelIdx * get_stride(p.bStride)));
+ index_t mapOfsIn = channelIdx * get_stride(p.xStride.z) + batchIdx * get_stride(p.xStride.w);
+ int idx = threadIdx.x;
+ const int loopCountIN = CEIL_DIV(tileInW * tileInH, threadsPerBlock);
+ #pragma unroll
+ for (int loop = 0; loop < loopCountIN; loop++)
+ {
+ int relInX, relInY;
+ fast_div_mod(relInX, relInY, idx);
+ int inX = tileInX + relInX;
+ int inY = tileInY + relInY;
+ scalar_t v = 0;
+
+ if ((uint32_t)inX < p.xShape.x && (uint32_t)inY < p.xShape.y)
+ v = (scalar_t)*((const T*)((const char*)p.x + (inX * get_stride(p.xStride.x) + inY * get_stride(p.xStride.y) + mapOfsIn))) + b;
+
+ bool skip = (loop == loopCountIN-1) && (idx >= tileInW * tileInH);
+ if (!skip)
+ s_tileIn[idx] = v;
+
+ idx += threadsPerBlock;
+ }
+
+ if (filterMode == MODE_SUSD || filterMode == MODE_SUFD) // Separable upsampling filter.
+ {
+ // Horizontal upsampling.
+ __syncthreads();
+ if (up == 4)
+ {
+ for (int idx = threadIdx.x*up; idx < tileUpW * tileInH; idx += blockDim.x*up)
+ {
+ int relUpX0, relInY;
+ fast_div_mod(relUpX0, relInY, idx);
+ int relInX0 = relUpX0 / up;
+ int src0 = relInX0 + tileInW * relInY;
+ int dst = relInY * tileUpW + relUpX0;
+ vec4_t v = InternalType::zero_vec4();
+ scalar_t a = s_tileIn[src0];
+ if (phaseInX == 0)
+ {
+ #pragma unroll
+ for (int step = 0; step < fuSize / up; step++)
+ {
+ v.x += a * (scalar_t)c_fu[step * up + 0];
+ a = s_tileIn[src0 + step + 1];
+ v.y += a * (scalar_t)c_fu[step * up + 3];
+ v.z += a * (scalar_t)c_fu[step * up + 2];
+ v.w += a * (scalar_t)c_fu[step * up + 1];
+ }
+ }
+ else if (phaseInX == 1)
+ {
+ #pragma unroll
+ for (int step = 0; step < fuSize / up; step++)
+ {
+ v.x += a * (scalar_t)c_fu[step * up + 1];
+ v.y += a * (scalar_t)c_fu[step * up + 0];
+ a = s_tileIn[src0 + step + 1];
+ v.z += a * (scalar_t)c_fu[step * up + 3];
+ v.w += a * (scalar_t)c_fu[step * up + 2];
+ }
+ }
+ else if (phaseInX == 2)
+ {
+ #pragma unroll
+ for (int step = 0; step < fuSize / up; step++)
+ {
+ v.x += a * (scalar_t)c_fu[step * up + 2];
+ v.y += a * (scalar_t)c_fu[step * up + 1];
+ v.z += a * (scalar_t)c_fu[step * up + 0];
+ a = s_tileIn[src0 + step + 1];
+ v.w += a * (scalar_t)c_fu[step * up + 3];
+ }
+ }
+ else // (phaseInX == 3)
+ {
+ #pragma unroll
+ for (int step = 0; step < fuSize / up; step++)
+ {
+ v.x += a * (scalar_t)c_fu[step * up + 3];
+ v.y += a * (scalar_t)c_fu[step * up + 2];
+ v.z += a * (scalar_t)c_fu[step * up + 1];
+ v.w += a * (scalar_t)c_fu[step * up + 0];
+ a = s_tileIn[src0 + step + 1];
+ }
+ }
+ s_tileUpX[dst+0] = v.x;
+ s_tileUpX[dst+1] = v.y;
+ s_tileUpX[dst+2] = v.z;
+ s_tileUpX[dst+3] = v.w;
+ }
+ }
+ else if (up == 2)
+ {
+ bool p0 = (phaseInX == 0);
+ for (int idx = threadIdx.x*up; idx < tileUpW * tileInH; idx += blockDim.x*up)
+ {
+ int relUpX0, relInY;
+ fast_div_mod(relUpX0, relInY, idx);
+ int relInX0 = relUpX0 / up;
+ int src0 = relInX0 + tileInW * relInY;
+ int dst = relInY * tileUpW + relUpX0;
+ vec2_t v = InternalType::zero_vec2();
+ scalar_t a = s_tileIn[src0];
+ if (p0) // (phaseInX == 0)
+ {
+ #pragma unroll
+ for (int step = 0; step < fuSize / up; step++)
+ {
+ v.x += a * (scalar_t)c_fu[step * up + 0];
+ a = s_tileIn[src0 + step + 1];
+ v.y += a * (scalar_t)c_fu[step * up + 1];
+ }
+ }
+ else // (phaseInX == 1)
+ {
+ #pragma unroll
+ for (int step = 0; step < fuSize / up; step++)
+ {
+ v.x += a * (scalar_t)c_fu[step * up + 1];
+ v.y += a * (scalar_t)c_fu[step * up + 0];
+ a = s_tileIn[src0 + step + 1];
+ }
+ }
+ s_tileUpX[dst+0] = v.x;
+ s_tileUpX[dst+1] = v.y;
+ }
+ }
+
+ // Vertical upsampling & nonlinearity.
+
+ __syncthreads();
+ int groupMask = 15 << ((threadIdx.x & 31) & ~3);
+ int minY = tileOutY ? (tileOutY - tileOutH) * down + tileUpH : 0; // Skip already written signs.
+ int sShapeMaxY = MIN(p.sShape.y, tileOutY * down + tileUpH); // Avoid out-of-tile sign writes.
+ if (up == 4)
+ {
+ minY -= 3; // Adjust according to block height.
+ for (int idx = threadIdx.x; idx < tileUpW * tileUpH_up / up; idx += blockDim.x)
+ {
+ int relUpX, relInY0;
+ fast_div_mod(relUpX, relInY0, idx);
+ int relUpY0 = relInY0 * up;
+ int src0 = relInY0 * tileUpW + relUpX;
+ int dst = relUpY0 * tileUpW + relUpX;
+ vec4_t v = InternalType::zero_vec4();
+
+ scalar_t a = s_tileUpX[src0];
+ if (phaseInY == 0)
+ {
+ #pragma unroll
+ for (int step = 0; step < fuSize / up; step++)
+ {
+ v.x += a * (scalar_t)c_fu[step * up + 0];
+ a = s_tileUpX[src0 + (step + 1) * tileUpW];
+ v.y += a * (scalar_t)c_fu[step * up + 3];
+ v.z += a * (scalar_t)c_fu[step * up + 2];
+ v.w += a * (scalar_t)c_fu[step * up + 1];
+ }
+ }
+ else if (phaseInY == 1)
+ {
+ #pragma unroll
+ for (int step = 0; step < fuSize / up; step++)
+ {
+ v.x += a * (scalar_t)c_fu[step * up + 1];
+ v.y += a * (scalar_t)c_fu[step * up + 0];
+ a = s_tileUpX[src0 + (step + 1) * tileUpW];
+ v.z += a * (scalar_t)c_fu[step * up + 3];
+ v.w += a * (scalar_t)c_fu[step * up + 2];
+ }
+ }
+ else if (phaseInY == 2)
+ {
+ #pragma unroll
+ for (int step = 0; step < fuSize / up; step++)
+ {
+ v.x += a * (scalar_t)c_fu[step * up + 2];
+ v.y += a * (scalar_t)c_fu[step * up + 1];
+ v.z += a * (scalar_t)c_fu[step * up + 0];
+ a = s_tileUpX[src0 + (step + 1) * tileUpW];
+ v.w += a * (scalar_t)c_fu[step * up + 3];
+ }
+ }
+ else // (phaseInY == 3)
+ {
+ #pragma unroll
+ for (int step = 0; step < fuSize / up; step++)
+ {
+ v.x += a * (scalar_t)c_fu[step * up + 3];
+ v.y += a * (scalar_t)c_fu[step * up + 2];
+ v.z += a * (scalar_t)c_fu[step * up + 1];
+ v.w += a * (scalar_t)c_fu[step * up + 0];
+ a = s_tileUpX[src0 + (step + 1) * tileUpW];
+ }
+ }
+
+ int x = tileOutX * down + relUpX;
+ int y = tileOutY * down + relUpY0;
+ int signX = x + p.sOfs.x;
+ int signY = y + p.sOfs.y;
+ int signZ = blockIdx.z + p.blockZofs;
+ int signXb = signX >> 2;
+ index_t si0 = signXb + p.sShape.x * (signY + (index_t)p.sShape.y * signZ);
+ index_t si1 = si0 + p.sShape.x;
+ index_t si2 = si0 + p.sShape.x * 2;
+ index_t si3 = si0 + p.sShape.x * 3;
+
+ v.x *= (scalar_t)((float)up * (float)up * p.gain);
+ v.y *= (scalar_t)((float)up * (float)up * p.gain);
+ v.z *= (scalar_t)((float)up * (float)up * p.gain);
+ v.w *= (scalar_t)((float)up * (float)up * p.gain);
+
+ if (signWrite)
+ {
+ if (!enableWriteSkip)
+ {
+ // Determine and write signs.
+ int sx = __float_as_uint(v.x) >> 31 << 0;
+ int sy = __float_as_uint(v.y) >> 31 << 8;
+ int sz = __float_as_uint(v.z) >> 31 << 16;
+ int sw = __float_as_uint(v.w) >> 31 << 24;
+ if (sx) v.x *= p.slope;
+ if (sy) v.y *= p.slope;
+ if (sz) v.z *= p.slope;
+ if (sw) v.w *= p.slope;
+ if (fabsf(v.x) > p.clamp) { sx = 2 << 0; v.x = InternalType::clamp(v.x, p.clamp); }
+ if (fabsf(v.y) > p.clamp) { sy = 2 << 8; v.y = InternalType::clamp(v.y, p.clamp); }
+ if (fabsf(v.z) > p.clamp) { sz = 2 << 16; v.z = InternalType::clamp(v.z, p.clamp); }
+ if (fabsf(v.w) > p.clamp) { sw = 2 << 24; v.w = InternalType::clamp(v.w, p.clamp); }
+
+ if ((uint32_t)signXb < p.swLimit && signY >= minY)
+ {
+ // Combine signs.
+ uint32_t s = sx + sy + sw + sz;
+ s <<= (signX & 3) << 1;
+ s |= __shfl_xor_sync(groupMask, s, 1);
+ s |= __shfl_xor_sync(groupMask, s, 2);
+
+ // Write signs.
+ if ((uint32_t)(signY + 0) < sShapeMaxY) { p.s[si0] = (unsigned char)(s >> 0); }
+ if ((uint32_t)(signY + 1) < sShapeMaxY) { p.s[si1] = (unsigned char)(s >> 8); }
+ if ((uint32_t)(signY + 2) < sShapeMaxY) { p.s[si2] = (unsigned char)(s >> 16); }
+ if ((uint32_t)(signY + 3) < sShapeMaxY) { p.s[si3] = (unsigned char)(s >> 24); }
+ }
+ }
+ else
+ {
+ // Determine and write signs.
+ if ((uint32_t)signXb < p.swLimit && signY >= minY)
+ {
+ int sx = __float_as_uint(v.x) >> 31 << 0;
+ int sy = __float_as_uint(v.y) >> 31 << 8;
+ int sz = __float_as_uint(v.z) >> 31 << 16;
+ int sw = __float_as_uint(v.w) >> 31 << 24;
+ if (sx) v.x *= p.slope;
+ if (sy) v.y *= p.slope;
+ if (sz) v.z *= p.slope;
+ if (sw) v.w *= p.slope;
+ if (fabsf(v.x) > p.clamp) { sx = 2 << 0; v.x = InternalType::clamp(v.x, p.clamp); }
+ if (fabsf(v.y) > p.clamp) { sy = 2 << 8; v.y = InternalType::clamp(v.y, p.clamp); }
+ if (fabsf(v.z) > p.clamp) { sz = 2 << 16; v.z = InternalType::clamp(v.z, p.clamp); }
+ if (fabsf(v.w) > p.clamp) { sw = 2 << 24; v.w = InternalType::clamp(v.w, p.clamp); }
+
+ // Combine signs.
+ uint32_t s = sx + sy + sw + sz;
+ s <<= (signX & 3) << 1;
+ s |= __shfl_xor_sync(groupMask, s, 1);
+ s |= __shfl_xor_sync(groupMask, s, 2);
+
+ // Write signs.
+ if ((uint32_t)(signY + 0) < sShapeMaxY) { p.s[si0] = (unsigned char)(s >> 0); }
+ if ((uint32_t)(signY + 1) < sShapeMaxY) { p.s[si1] = (unsigned char)(s >> 8); }
+ if ((uint32_t)(signY + 2) < sShapeMaxY) { p.s[si2] = (unsigned char)(s >> 16); }
+ if ((uint32_t)(signY + 3) < sShapeMaxY) { p.s[si3] = (unsigned char)(s >> 24); }
+ }
+ else
+ {
+ // Just compute the values.
+ if (v.x < 0.f) v.x *= p.slope; v.x = InternalType::clamp(v.x, p.clamp);
+ if (v.y < 0.f) v.y *= p.slope; v.y = InternalType::clamp(v.y, p.clamp);
+ if (v.z < 0.f) v.z *= p.slope; v.z = InternalType::clamp(v.z, p.clamp);
+ if (v.w < 0.f) v.w *= p.slope; v.w = InternalType::clamp(v.w, p.clamp);
+ }
+ }
+ }
+ else if (signRead) // Read signs and apply.
+ {
+ if ((uint32_t)signXb < p.swLimit)
+ {
+ int ss = (signX & 3) << 1;
+ if ((uint32_t)(signY + 0) < p.sShape.y) { int s = p.s[si0] >> ss; if (s & 1) v.x *= p.slope; if (s & 2) v.x = 0.f; }
+ if ((uint32_t)(signY + 1) < p.sShape.y) { int s = p.s[si1] >> ss; if (s & 1) v.y *= p.slope; if (s & 2) v.y = 0.f; }
+ if ((uint32_t)(signY + 2) < p.sShape.y) { int s = p.s[si2] >> ss; if (s & 1) v.z *= p.slope; if (s & 2) v.z = 0.f; }
+ if ((uint32_t)(signY + 3) < p.sShape.y) { int s = p.s[si3] >> ss; if (s & 1) v.w *= p.slope; if (s & 2) v.w = 0.f; }
+ }
+ }
+ else // Forward pass with no sign write.
+ {
+ if (v.x < 0.f) v.x *= p.slope; v.x = InternalType::clamp(v.x, p.clamp);
+ if (v.y < 0.f) v.y *= p.slope; v.y = InternalType::clamp(v.y, p.clamp);
+ if (v.z < 0.f) v.z *= p.slope; v.z = InternalType::clamp(v.z, p.clamp);
+ if (v.w < 0.f) v.w *= p.slope; v.w = InternalType::clamp(v.w, p.clamp);
+ }
+
+ s_tileUpXY[dst + 0 * tileUpW] = v.x;
+ if (relUpY0 + 1 < tileUpH) s_tileUpXY[dst + 1 * tileUpW] = v.y;
+ if (relUpY0 + 2 < tileUpH) s_tileUpXY[dst + 2 * tileUpW] = v.z;
+ if (relUpY0 + 3 < tileUpH) s_tileUpXY[dst + 3 * tileUpW] = v.w;
+ }
+ }
+ else if (up == 2)
+ {
+ minY -= 1; // Adjust according to block height.
+ for (int idx = threadIdx.x; idx < tileUpW * tileUpH_up / up; idx += blockDim.x)
+ {
+ int relUpX, relInY0;
+ fast_div_mod(relUpX, relInY0, idx);
+ int relUpY0 = relInY0 * up;
+ int src0 = relInY0 * tileUpW + relUpX;
+ int dst = relUpY0 * tileUpW + relUpX;
+ vec2_t v = InternalType::zero_vec2();
+
+ scalar_t a = s_tileUpX[src0];
+ if (phaseInY == 0)
+ {
+ #pragma unroll
+ for (int step = 0; step < fuSize / up; step++)
+ {
+ v.x += a * (scalar_t)c_fu[step * up + 0];
+ a = s_tileUpX[src0 + (step + 1) * tileUpW];
+ v.y += a * (scalar_t)c_fu[step * up + 1];
+ }
+ }
+ else // (phaseInY == 1)
+ {
+ #pragma unroll
+ for (int step = 0; step < fuSize / up; step++)
+ {
+ v.x += a * (scalar_t)c_fu[step * up + 1];
+ v.y += a * (scalar_t)c_fu[step * up + 0];
+ a = s_tileUpX[src0 + (step + 1) * tileUpW];
+ }
+ }
+
+ int x = tileOutX * down + relUpX;
+ int y = tileOutY * down + relUpY0;
+ int signX = x + p.sOfs.x;
+ int signY = y + p.sOfs.y;
+ int signZ = blockIdx.z + p.blockZofs;
+ int signXb = signX >> 2;
+ index_t si0 = signXb + p.sShape.x * (signY + (index_t)p.sShape.y * signZ);
+ index_t si1 = si0 + p.sShape.x;
+
+ v.x *= (scalar_t)((float)up * (float)up * p.gain);
+ v.y *= (scalar_t)((float)up * (float)up * p.gain);
+
+ if (signWrite)
+ {
+ if (!enableWriteSkip)
+ {
+ // Determine and write signs.
+ int sx = __float_as_uint(v.x) >> 31 << 0;
+ int sy = __float_as_uint(v.y) >> 31 << 8;
+ if (sx) v.x *= p.slope;
+ if (sy) v.y *= p.slope;
+ if (fabsf(v.x) > p.clamp) { sx = 2 << 0; v.x = InternalType::clamp(v.x, p.clamp); }
+ if (fabsf(v.y) > p.clamp) { sy = 2 << 8; v.y = InternalType::clamp(v.y, p.clamp); }
+
+ if ((uint32_t)signXb < p.swLimit && signY >= minY)
+ {
+ // Combine signs.
+ int s = sx + sy;
+ s <<= signXo;
+ s |= __shfl_xor_sync(groupMask, s, 1);
+ s |= __shfl_xor_sync(groupMask, s, 2);
+
+ // Write signs.
+ if ((uint32_t)(signY + 0) < sShapeMaxY) { p.s[si0] = (unsigned char)(s >> 0); }
+ if ((uint32_t)(signY + 1) < sShapeMaxY) { p.s[si1] = (unsigned char)(s >> 8); }
+ }
+ }
+ else
+ {
+ // Determine and write signs.
+ if ((uint32_t)signXb < p.swLimit && signY >= minY)
+ {
+ int sx = __float_as_uint(v.x) >> 31 << 0;
+ int sy = __float_as_uint(v.y) >> 31 << 8;
+ if (sx) v.x *= p.slope;
+ if (sy) v.y *= p.slope;
+ if (fabsf(v.x) > p.clamp) { sx = 2 << 0; v.x = InternalType::clamp(v.x, p.clamp); }
+ if (fabsf(v.y) > p.clamp) { sy = 2 << 8; v.y = InternalType::clamp(v.y, p.clamp); }
+
+ // Combine signs.
+ int s = sx + sy;
+ s <<= signXo;
+ s |= __shfl_xor_sync(groupMask, s, 1);
+ s |= __shfl_xor_sync(groupMask, s, 2);
+
+ // Write signs.
+ if ((uint32_t)(signY + 0) < sShapeMaxY) { p.s[si0] = (unsigned char)(s >> 0); }
+ if ((uint32_t)(signY + 1) < sShapeMaxY) { p.s[si1] = (unsigned char)(s >> 8); }
+ }
+ else
+ {
+ // Just compute the values.
+ if (v.x < 0.f) v.x *= p.slope; v.x = InternalType::clamp(v.x, p.clamp);
+ if (v.y < 0.f) v.y *= p.slope; v.y = InternalType::clamp(v.y, p.clamp);
+ }
+ }
+ }
+ else if (signRead) // Read signs and apply.
+ {
+ if ((uint32_t)signXb < p.swLimit)
+ {
+ if ((uint32_t)(signY + 0) < p.sShape.y) { int s = p.s[si0] >> signXo; if (s & 1) v.x *= p.slope; if (s & 2) v.x = 0.f; }
+ if ((uint32_t)(signY + 1) < p.sShape.y) { int s = p.s[si1] >> signXo; if (s & 1) v.y *= p.slope; if (s & 2) v.y = 0.f; }
+ }
+ }
+ else // Forward pass with no sign write.
+ {
+ if (v.x < 0.f) v.x *= p.slope; v.x = InternalType::clamp(v.x, p.clamp);
+ if (v.y < 0.f) v.y *= p.slope; v.y = InternalType::clamp(v.y, p.clamp);
+ }
+
+ if (!downInline)
+ {
+ // Write into temporary buffer.
+ s_tileUpXY[dst] = v.x;
+ if (relUpY0 < tileUpH - 1)
+ s_tileUpXY[dst + tileUpW] = v.y;
+ }
+ else
+ {
+ // Write directly into output buffer.
+ if ((uint32_t)x < p.yShape.x)
+ {
+ int ymax = MIN(p.yShape.y, tileUpH + tileOutY * down);
+ index_t ofs = x * get_stride(p.yStride.x) + y * get_stride(p.yStride.y) + mapOfsOut;
+ if ((uint32_t)y + 0 < p.yShape.y) *((T*)((char*)p.y + ofs)) = (T)(v.x * (scalar_t)c_fd[0]);
+ if ((uint32_t)y + 1 < ymax) *((T*)((char*)p.y + ofs + get_stride(p.yStride.y))) = (T)(v.y * (scalar_t)c_fd[0]);
+ }
+ }
+ }
+ }
+ }
+ else if (filterMode == MODE_FUSD || filterMode == MODE_FUFD)
+ {
+ // Full upsampling filter.
+
+ if (up == 2)
+ {
+ // 2 x 2-wide.
+ __syncthreads();
+ int minY = tileOutY ? (tileOutY - tileOutH) * down + tileUpH + p.sOfs.y : 0; // Skip already written signs.
+ for (int idx = threadIdx.x * 4; idx < tileUpW * tileUpH; idx += blockDim.x * 4)
+ {
+ int relUpX0, relUpY0;
+ fast_div_mod(relUpX0, relUpY0, idx);
+ int relInX0 = CEIL_DIV(relUpX0 - phaseInX, up);
+ int relInY0 = CEIL_DIV(relUpY0 - phaseInY, up);
+ int src0 = relInX0 + tileInW * relInY0;
+ int tap0y = (relInY0 * up + phaseInY - relUpY0);
+
+ #define X_LOOP(TAPY, PX) \
+ for (int sx = 0; sx < fuSize / up; sx++) \
+ { \
+ v.x += a * (scalar_t)c_fu[(sx * up + (((PX) - 0) & (up - 1))) + (sy * up + (TAPY)) * MAX_FILTER_SIZE]; \
+ v.z += b * (scalar_t)c_fu[(sx * up + (((PX) - 0) & (up - 1))) + (sy * up + (TAPY)) * MAX_FILTER_SIZE]; if ((PX) == 0) { a = b; b = s_tileIn[src0 + 2 + sx + sy * tileInW]; } \
+ v.y += a * (scalar_t)c_fu[(sx * up + (((PX) - 1) & (up - 1))) + (sy * up + (TAPY)) * MAX_FILTER_SIZE]; \
+ v.w += b * (scalar_t)c_fu[(sx * up + (((PX) - 1) & (up - 1))) + (sy * up + (TAPY)) * MAX_FILTER_SIZE]; if ((PX) == 1) { a = b; b = s_tileIn[src0 + 2 + sx + sy * tileInW]; } \
+ }
+
+ vec4_t v = InternalType::zero_vec4();
+ if (tap0y == 0 && phaseInX == 0)
+ #pragma unroll
+ for (int sy = 0; sy < fuSize / up; sy++) { scalar_t a = s_tileIn[src0 + sy * tileInW]; scalar_t b = s_tileIn[src0 + sy * tileInW + 1];
+ #pragma unroll
+ X_LOOP(0, 0) }
+ if (tap0y == 0 && phaseInX == 1)
+ #pragma unroll
+ for (int sy = 0; sy < fuSize / up; sy++) { scalar_t a = s_tileIn[src0 + sy * tileInW]; scalar_t b = s_tileIn[src0 + sy * tileInW + 1];
+ #pragma unroll
+ X_LOOP(0, 1) }
+ if (tap0y == 1 && phaseInX == 0)
+ #pragma unroll
+ for (int sy = 0; sy < fuSize / up; sy++) { scalar_t a = s_tileIn[src0 + sy * tileInW]; scalar_t b = s_tileIn[src0 + sy * tileInW + 1];
+ #pragma unroll
+ X_LOOP(1, 0) }
+ if (tap0y == 1 && phaseInX == 1)
+ #pragma unroll
+ for (int sy = 0; sy < fuSize / up; sy++) { scalar_t a = s_tileIn[src0 + sy * tileInW]; scalar_t b = s_tileIn[src0 + sy * tileInW + 1];
+ #pragma unroll
+ X_LOOP(1, 1) }
+
+ #undef X_LOOP
+
+ int x = tileOutX * down + relUpX0;
+ int y = tileOutY * down + relUpY0;
+ int signX = x + p.sOfs.x;
+ int signY = y + p.sOfs.y;
+ int signZ = blockIdx.z + p.blockZofs;
+ int signXb = signX >> 2;
+ index_t si = signXb + p.sShape.x * (signY + (index_t)p.sShape.y * signZ);
+
+ v.x *= (scalar_t)((float)up * (float)up * p.gain);
+ v.y *= (scalar_t)((float)up * (float)up * p.gain);
+ v.z *= (scalar_t)((float)up * (float)up * p.gain);
+ v.w *= (scalar_t)((float)up * (float)up * p.gain);
+
+ if (signWrite)
+ {
+ if (!enableWriteSkip)
+ {
+ // Determine and write signs.
+ int sx = __float_as_uint(v.x) >> 31;
+ int sy = __float_as_uint(v.y) >> 31;
+ int sz = __float_as_uint(v.z) >> 31;
+ int sw = __float_as_uint(v.w) >> 31;
+ if (sx) v.x *= p.slope; if (fabsf(v.x) > p.clamp) { sx = 2; v.x = InternalType::clamp(v.x, p.clamp); }
+ if (sy) v.y *= p.slope; if (fabsf(v.y) > p.clamp) { sy = 2; v.y = InternalType::clamp(v.y, p.clamp); }
+ if (sz) v.z *= p.slope; if (fabsf(v.z) > p.clamp) { sz = 2; v.z = InternalType::clamp(v.z, p.clamp); }
+ if (sw) v.w *= p.slope; if (fabsf(v.w) > p.clamp) { sw = 2; v.w = InternalType::clamp(v.w, p.clamp); }
+
+ if ((uint32_t)signXb < p.swLimit && (uint32_t)signY < p.sShape.y && signY >= minY)
+ {
+ p.s[si] = sx + (sy << 2) + (sz << 4) + (sw << 6);
+ }
+ }
+ else
+ {
+ // Determine and write signs.
+ if ((uint32_t)signXb < p.swLimit && (uint32_t)signY < p.sShape.y && signY >= minY)
+ {
+ int sx = __float_as_uint(v.x) >> 31;
+ int sy = __float_as_uint(v.y) >> 31;
+ int sz = __float_as_uint(v.z) >> 31;
+ int sw = __float_as_uint(v.w) >> 31;
+ if (sx) v.x *= p.slope; if (fabsf(v.x) > p.clamp) { sx = 2; v.x = InternalType::clamp(v.x, p.clamp); }
+ if (sy) v.y *= p.slope; if (fabsf(v.y) > p.clamp) { sy = 2; v.y = InternalType::clamp(v.y, p.clamp); }
+ if (sz) v.z *= p.slope; if (fabsf(v.z) > p.clamp) { sz = 2; v.z = InternalType::clamp(v.z, p.clamp); }
+ if (sw) v.w *= p.slope; if (fabsf(v.w) > p.clamp) { sw = 2; v.w = InternalType::clamp(v.w, p.clamp); }
+
+ p.s[si] = sx + (sy << 2) + (sz << 4) + (sw << 6);
+ }
+ else
+ {
+ // Just compute the values.
+ if (v.x < 0.f) v.x *= p.slope; v.x = InternalType::clamp(v.x, p.clamp);
+ if (v.y < 0.f) v.y *= p.slope; v.y = InternalType