fujie_code/yolo.py

426 lines
21 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import colorsys
import os
import time
import numpy as np
import torch
import torch.nn as nn
from PIL import ImageDraw, ImageFont
from nets.yolo import YoloBody
from utils.utils import (cvtColor, get_anchors, get_classes, preprocess_input,
resize_image, show_config)
from utils.utils_bbox import DecodeBox
'''
训练自己的数据集必看注释!
'''
class YOLO(object):
_defaults = {
# --------------------------------------------------------------------------#
# 使用自己训练好的模型进行预测一定要修改model_path和classes_path
# model_path指向logs文件夹下的权值文件classes_path指向model_data下的txt
#
# 训练好后logs文件夹下存在多个权值文件选择验证集损失较低的即可。
# 验证集损失较低不代表mAP较高仅代表该权值在验证集上泛化性能较好。
# 如果出现shape不匹配同时要注意训练时的model_path和classes_path参数的修改
# --------------------------------------------------------------------------#
# "model_path": 'model_data/yolo_weights.pth',
# "classes_path": 'model_data/coco_classes.txt',
"model_path": 'logs/best_epoch_weights.pth',
"classes_path": 'model_data/cctsdb_classes.txt',
# ---------------------------------------------------------------------#
# anchors_path代表先验框对应的txt文件一般不修改。
# anchors_mask用于帮助代码找到对应的先验框一般不修改。
# ---------------------------------------------------------------------#
"anchors_path": 'model_data/yolo_anchors.txt',
"anchors_mask": [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
# ---------------------------------------------------------------------#
# 输入图片的大小必须为32的倍数。
# ---------------------------------------------------------------------#
"input_shape": [416, 416],
# ---------------------------------------------------------------------#
# 只有得分大于置信度的预测框会被保留下来
# ---------------------------------------------------------------------#
"confidence": 0.5,
# ---------------------------------------------------------------------#
# 非极大抑制所用到的nms_iou大小
# ---------------------------------------------------------------------#
"nms_iou": 0.3,
# ---------------------------------------------------------------------#
# 该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize
# 在多次测试后发现关闭letterbox_image直接resize的效果更好
# ---------------------------------------------------------------------#
"letterbox_image": False,
# -------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
# -------------------------------#
"cuda": True
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
# ---------------------------------------------------#
# 初始化YOLO
# ---------------------------------------------------#
def __init__(self, **kwargs):
self.__dict__.update(self._defaults) # 用类的_defaults变量更新当前对象的属性字典
for name, value in kwargs.items():
setattr(self, name, value)
# ---------------------------------------------------#
# 获得种类和先验框的数量
# ---------------------------------------------------#
self.class_names, self.num_classes = get_classes(self.classes_path)
self.anchors, self.num_anchors = get_anchors(self.anchors_path)
self.bbox_util = DecodeBox(self.anchors, self.num_classes, (self.input_shape[0], self.input_shape[1]),
self.anchors_mask)
# ---------------------------------------------------#
# 画框设置不同的颜色
# ---------------------------------------------------#
hsv_tuples = [(x / self.num_classes, 1., 1.) for x in range(self.num_classes)]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors))
self.generate()
show_config(**self._defaults)
# ---------------------------------------------------#
# 生成模型
# ---------------------------------------------------#
def generate(self, onnx=False):
# ---------------------------------------------------#
# 建立yolov3模型载入yolov3模型的权重
# ---------------------------------------------------#
self.net = YoloBody(self.anchors_mask, self.num_classes)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.net.load_state_dict(torch.load(self.model_path, map_location=device))
self.net = self.net.eval()
print('{} model, anchors, and classes loaded.'.format(self.model_path))
# if not onnx:
# if self.cuda:
# self.net = nn.DataParallel(self.net)
# self.net = self.net.cuda()
if not onnx:
if self.cuda:
self.net = self.net.cuda()
# ---------------------------------------------------#
# 检测图片
# ---------------------------------------------------#
def detect_image(self, image, crop=False, count=False):
image_shape = np.array(np.shape(image)[0:2]) # np.shape(image) 的形状 h,w,c
# ---------------------------------------------------------#
# 在这里将图像转换成RGB图像防止灰度图在预测时报错。
# 代码仅仅支持RGB图像的预测所有其它类型的图像都会转化成RGB
# ---------------------------------------------------------#
image = cvtColor(image)
# ---------------------------------------------------------#
# 给图像增加灰条实现不失真的resize
# 也可以直接resize进行识别
# ---------------------------------------------------------#
image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
# ---------------------------------------------------------#
# 添加上batch_size维度
# ---------------------------------------------------------#
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
# image_data 变换后的维度是 1, 3, 416, 416
with torch.no_grad():
images = torch.from_numpy(image_data)
if self.cuda:
images = images.cuda()
# ---------------------------------------------------------#
# 将图像输入网络当中进行预测!
# ---------------------------------------------------------#
outputs = self.net(images)
outputs = self.bbox_util.decode_box(outputs)
# ---------------------------------------------------------#
# 将预测框进行堆叠,然后进行非极大抑制
# ---------------------------------------------------------#
results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape,
image_shape, self.letterbox_image, conf_thres=self.confidence,
nms_thres=self.nms_iou)
if results[0] is None:
return image
top_label = np.array(results[0][:, 6], dtype='int32')
top_conf = results[0][:, 4] * results[0][:, 5]
top_boxes = results[0][:, :4]
# ---------------------------------------------------------#
# 设置字体与边框厚度
# ---------------------------------------------------------#
font = ImageFont.truetype(font='model_data/simhei.ttf',
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
thickness = int(max((image.size[0] + image.size[1]) // np.mean(self.input_shape), 1))
# ---------------------------------------------------------#
# 计数
# ---------------------------------------------------------#
if count:
print("top_label:", top_label)
classes_nums = np.zeros([self.num_classes])
for i in range(self.num_classes):
num = np.sum(top_label == i)
if num > 0:
print(self.class_names[i], " : ", num)
classes_nums[i] = num
print("classes_nums:", classes_nums)
# ---------------------------------------------------------#
# 是否进行目标的裁剪
# ---------------------------------------------------------#
if crop:
for i, c in list(enumerate(top_label)):
top, left, bottom, right = top_boxes[i]
top = max(0, np.floor(top).astype('int32'))
left = max(0, np.floor(left).astype('int32'))
bottom = min(image.size[1], np.floor(bottom).astype('int32'))
right = min(image.size[0], np.floor(right).astype('int32'))
dir_save_path = "img_crop"
if not os.path.exists(dir_save_path):
os.makedirs(dir_save_path)
crop_image = image.crop([left, top, right, bottom])
crop_image.save(os.path.join(dir_save_path, "crop_" + str(i) + ".png"), quality=95, subsampling=0)
print("save crop_" + str(i) + ".png to " + dir_save_path)
# ---------------------------------------------------------#
# 图像绘制
# ---------------------------------------------------------#
for i, c in list(enumerate(top_label)):
predicted_class = self.class_names[int(c)]
box = top_boxes[i]
score = top_conf[i]
top, left, bottom, right = box
top = max(0, np.floor(top).astype('int32'))
left = max(0, np.floor(left).astype('int32'))
bottom = min(image.size[1], np.floor(bottom).astype('int32'))
right = min(image.size[0], np.floor(right).astype('int32'))
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
label = label.encode('utf-8')
# print(label, top, left, bottom, right)
if top - label_size[1] >= 0: # 框到顶的距离大于 label_size就是可以在顶部放标签
text_origin = np.array([left, top - label_size[1]])
else: # 否则放在框内部
text_origin = np.array([left, top + 1])
for i in range(thickness): # 画粗细的实现是画6次
draw.rectangle([left + i, top + i, right - i, bottom - i], outline=self.colors[c])
draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c])
draw.text(text_origin, str(label, 'UTF-8'), fill=(0, 0, 0), font=font)
del draw
return image
def get_FPS(self, image, test_interval):
image_shape = np.array(np.shape(image)[0:2])
# ---------------------------------------------------------#
# 在这里将图像转换成RGB图像防止灰度图在预测时报错。
# 代码仅仅支持RGB图像的预测所有其它类型的图像都会转化成RGB
# ---------------------------------------------------------#
image = cvtColor(image)
# ---------------------------------------------------------#
# 给图像增加灰条实现不失真的resize
# 也可以直接resize进行识别
# ---------------------------------------------------------#
image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
# ---------------------------------------------------------#
# 添加上batch_size维度
# ---------------------------------------------------------#
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
with torch.no_grad():
images = torch.from_numpy(image_data)
if self.cuda:
images = images.cuda()
# ---------------------------------------------------------#
# 将图像输入网络当中进行预测!
# ---------------------------------------------------------#
outputs = self.net(images)
outputs = self.bbox_util.decode_box(outputs)
# ---------------------------------------------------------#
# 将预测框进行堆叠,然后进行非极大抑制
# ---------------------------------------------------------#
results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape,
image_shape, self.letterbox_image, conf_thres=self.confidence,
nms_thres=self.nms_iou)
t1 = time.time()
for _ in range(test_interval):
with torch.no_grad():
# ---------------------------------------------------------#
# 将图像输入网络当中进行预测!
# ---------------------------------------------------------#
outputs = self.net(images)
outputs = self.bbox_util.decode_box(outputs)
# ---------------------------------------------------------#
# 将预测框进行堆叠,然后进行非极大抑制
# ---------------------------------------------------------#
results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape,
image_shape, self.letterbox_image,
conf_thres=self.confidence, nms_thres=self.nms_iou)
t2 = time.time()
tact_time = (t2 - t1) / test_interval
return tact_time
def detect_heatmap(self, image, heatmap_save_path):
import cv2
import matplotlib.pyplot as plt
def sigmoid(x):
y = 1.0 / (1.0 + np.exp(-x))
return y
# ---------------------------------------------------------#
# 在这里将图像转换成RGB图像防止灰度图在预测时报错。
# 代码仅仅支持RGB图像的预测所有其它类型的图像都会转化成RGB
# ---------------------------------------------------------#
image = cvtColor(image)
# ---------------------------------------------------------#
# 给图像增加灰条实现不失真的resize
# 也可以直接resize进行识别
# ---------------------------------------------------------#
image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
# ---------------------------------------------------------#
# 添加上batch_size维度
# ---------------------------------------------------------#
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
with torch.no_grad():
images = torch.from_numpy(image_data)
if self.cuda:
images = images.cuda()
# ---------------------------------------------------------#
# 将图像输入网络当中进行预测!
# ---------------------------------------------------------#
outputs = self.net(images)
plt.imshow(image, alpha=1)
plt.axis('off')
mask = np.zeros((image.size[1], image.size[0]))
for sub_output in outputs:
sub_output = sub_output.cpu().numpy()
b, c, h, w = np.shape(sub_output)
sub_output = np.transpose(np.reshape(sub_output, [b, 3, -1, h, w]), [0, 3, 4, 1, 2])[0]
score = np.max(sigmoid(sub_output[..., 4]), -1)
score = cv2.resize(score, (image.size[0], image.size[1]))
normed_score = (score * 255).astype('uint8')
mask = np.maximum(mask, normed_score)
plt.imshow(mask, alpha=0.5, interpolation='nearest', cmap="jet")
plt.axis('off')
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
plt.savefig(heatmap_save_path, dpi=200, bbox_inches='tight', pad_inches=-0.1)
print("Save to the " + heatmap_save_path)
plt.show()
def convert_to_onnx(self, simplify, model_path):
import onnx
self.generate(onnx=True)
im = torch.zeros(1, 3, *self.input_shape).to('cpu') # image size(1, 3, 512, 512) BCHW
input_layer_names = ["images"]
output_layer_names = ["output"]
# Export the model
print(f'Starting export with onnx {onnx.__version__}.')
torch.onnx.export(self.net,
im,
f=model_path,
verbose=False,
opset_version=12,
training=torch.onnx.TrainingMode.EVAL,
do_constant_folding=True,
input_names=input_layer_names,
output_names=output_layer_names,
dynamic_axes=None)
# Checks
model_onnx = onnx.load(model_path) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
# Simplify onnx
if simplify:
import onnxsim
print(f'Simplifying with onnx-simplifier {onnxsim.__version__}.')
model_onnx, check = onnxsim.simplify(
model_onnx,
dynamic_input_shape=False,
input_shapes=None)
assert check, 'assert check failed'
onnx.save(model_onnx, model_path)
print('Onnx model save as {}'.format(model_path))
def get_map_txt(self, image_id, image, class_names, map_out_path):
f = open(os.path.join(map_out_path, "detection-results/" + image_id + ".txt"), "w")
image_shape = np.array(np.shape(image)[0:2])
# ---------------------------------------------------------#
# 在这里将图像转换成RGB图像防止灰度图在预测时报错。
# 代码仅仅支持RGB图像的预测所有其它类型的图像都会转化成RGB
# ---------------------------------------------------------#
image = cvtColor(image)
# ---------------------------------------------------------#
# 给图像增加灰条实现不失真的resize
# 也可以直接resize进行识别
# ---------------------------------------------------------#
image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
# ---------------------------------------------------------#
# 添加上batch_size维度
# ---------------------------------------------------------#
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
with torch.no_grad():
images = torch.from_numpy(image_data)
if self.cuda:
images = images.cuda()
# ---------------------------------------------------------#
# 将图像输入网络当中进行预测!
# ---------------------------------------------------------#
outputs = self.net(images)
outputs = self.bbox_util.decode_box(outputs)
# ---------------------------------------------------------#
# 将预测框进行堆叠,然后进行非极大抑制
# ---------------------------------------------------------#
results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape,
image_shape, self.letterbox_image, conf_thres=self.confidence,
nms_thres=self.nms_iou)
if results[0] is None:
return
top_label = np.array(results[0][:, 6], dtype='int32')
top_conf = results[0][:, 4] * results[0][:, 5]
top_boxes = results[0][:, :4]
for i, c in list(enumerate(top_label)):
predicted_class = self.class_names[int(c)]
box = top_boxes[i]
score = str(top_conf[i])
top, left, bottom, right = box
if predicted_class not in class_names:
continue
f.write("%s %s %s %s %s %s\n" % (
predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)), str(int(bottom))))
f.close()
return