// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include "yolov5_detect_postprocess.h" #include static char labels[YOLOV5_CLASS_NUM][30] = {"0", "1"}; const int anchor0[6] = {10, 13, 16, 30, 33, 23}; const int anchor1[6] = {30, 61, 62, 45, 59, 119}; const int anchor2[6] = {116, 90, 156, 198, 373, 326}; inline static int clamp(float val, int min, int max) { return val > min ? (val < max ? val : max) : min; } static float CalculateOverlap(float xmin0, float ymin0, float xmax0, float ymax0, float xmin1, float ymin1, float xmax1, float ymax1) { float w = fmax(0.f, fmin(xmax0, xmax1) - fmax(xmin0, xmin1) + 1.0); float h = fmax(0.f, fmin(ymax0, ymax1) - fmax(ymin0, ymin1) + 1.0); float i = w * h; float u = (xmax0 - xmin0 + 1.0) * (ymax0 - ymin0 + 1.0) + (xmax1 - xmin1 + 1.0) * (ymax1 - ymin1 + 1.0) - i; return u <= 0.f ? 0.f : (i / u); } static int nms(int validCount, std::vector &outputLocations, std::vector &order, float threshold) { for (int i = 0; i < validCount; ++i) { if (order[i] == -1) { continue; } int n = order[i]; for (int j = i + 1; j < validCount; ++j) { int m = order[j]; if (m == -1) { continue; } float xmin0 = outputLocations[n * 4 + 0]; float ymin0 = outputLocations[n * 4 + 1]; float xmax0 = outputLocations[n * 4 + 0] + outputLocations[n * 4 + 2]; float ymax0 = outputLocations[n * 4 + 1] + outputLocations[n * 4 + 3]; float xmin1 = outputLocations[m * 4 + 0]; float ymin1 = outputLocations[m * 4 + 1]; float xmax1 = outputLocations[m * 4 + 0] + outputLocations[m * 4 + 2]; float ymax1 = outputLocations[m * 4 + 1] + outputLocations[m * 4 + 3]; float iou = CalculateOverlap(xmin0, ymin0, xmax0, ymax0, xmin1, ymin1, xmax1, ymax1); if (iou > threshold) { order[j] = -1; } } } return 0; } static int quick_sort_indice_inverse( std::vector &input, int left, int right, std::vector &indices) { float key; int key_index; int low = left; int high = right; if (left < right) { key_index = indices[left]; key = input[left]; while (low < high) { while (low < high && input[high] <= key) { high--; } input[low] = input[high]; indices[low] = indices[high]; while (low < high && input[low] >= key) { low++; } input[high] = input[low]; indices[high] = indices[low]; } input[low] = key; indices[low] = key_index; quick_sort_indice_inverse(input, left, low - 1, indices); quick_sort_indice_inverse(input, low + 1, right, indices); } return low; } static float sigmoid(float x) { return 1.0 / (1.0 + expf(-x)); } static float unsigmoid(float y) { return -1.0 * logf((1.0 / y) - 1.0); } inline static int32_t __clip(float val, float min, float max) { float f = val <= min ? min : (val >= max ? max : val); return f; } static uint8_t qnt_f32_to_affine(float f32, uint8_t zp, float scale) { float dst_val = (f32 / scale) + zp; uint8_t res = (uint8_t)__clip(dst_val, 0, 255); return res; } static float deqnt_affine_to_f32(uint8_t qnt, uint8_t zp, float scale) { return ((float)qnt - (float)zp) * scale; } static int process_u8(uint8_t *input, int *anchor, int grid_h, int grid_w, int height, int width, int stride, std::vector &boxes, std::vector &boxScores, std::vector &classId, float threshold, uint8_t zp, float scale) { int validCount = 0; int grid_len = grid_h * grid_w; float thres = unsigmoid(threshold); uint8_t thres_u8 = qnt_f32_to_affine(thres, zp, scale); for (int a = 0; a < 3; a++) { for (int i = 0; i < grid_h; i++) { for (int j = 0; j < grid_w; j++) { uint8_t box_confidence = input[(YOLOV5_PROP_BOX_SIZE * a + 4) * grid_len + i * grid_w + j]; if (box_confidence >= thres_u8) { int offset = (YOLOV5_PROP_BOX_SIZE * a) * grid_len + i * grid_w + j; uint8_t *in_ptr = input + offset; float box_x = sigmoid(deqnt_affine_to_f32(*in_ptr, zp, scale)) * 2.0 - 0.5; float box_y = sigmoid(deqnt_affine_to_f32(in_ptr[grid_len], zp, scale)) * 2.0 - 0.5; float box_w = sigmoid(deqnt_affine_to_f32(in_ptr[2 * grid_len], zp, scale)) * 2.0; float box_h = sigmoid(deqnt_affine_to_f32(in_ptr[3 * grid_len], zp, scale)) * 2.0; box_x = (box_x + j) * (float)stride; box_y = (box_y + i) * (float)stride; box_w = box_w * box_w * (float)anchor[a * 2]; box_h = box_h * box_h * (float)anchor[a * 2 + 1]; box_x -= (box_w / 2.0); box_y -= (box_h / 2.0); boxes.push_back(box_x); boxes.push_back(box_y); boxes.push_back(box_w); boxes.push_back(box_h); uint8_t maxClassProbs = in_ptr[5 * grid_len]; int maxClassId = 0; for (int k = 1; k < YOLOV5_CLASS_NUM; ++k) { uint8_t prob = in_ptr[(5 + k) * grid_len]; if (prob > maxClassProbs) { maxClassId = k; maxClassProbs = prob; } } float box_conf_f32 = sigmoid(deqnt_affine_to_f32(box_confidence, zp, scale)); float class_prob_f32 = sigmoid(deqnt_affine_to_f32(maxClassProbs, zp, scale)); boxScores.push_back(box_conf_f32* class_prob_f32); classId.push_back(maxClassId); validCount++; } } } } return validCount; } static int process_fp(float *input, int *anchor, int grid_h, int grid_w, int height, int width, int stride, std::vector &boxes, std::vector &boxScores, std::vector &classId, float threshold) { int validCount = 0; int grid_len = grid_h * grid_w; float thres_sigmoid = unsigmoid(threshold); for (int a = 0; a < 3; a++) { for (int i = 0; i < grid_h; i++) { for (int j = 0; j < grid_w; j++) { float box_confidence = input[(YOLOV5_PROP_BOX_SIZE * a + 4) * grid_len + i * grid_w + j]; if (box_confidence >= thres_sigmoid) { int offset = (YOLOV5_PROP_BOX_SIZE * a) * grid_len + i * grid_w + j; float *in_ptr = input + offset; float box_x = sigmoid(*in_ptr) * 2.0 - 0.5; float box_y = sigmoid(in_ptr[grid_len]) * 2.0 - 0.5; float box_w = sigmoid(in_ptr[2 * grid_len]) * 2.0; float box_h = sigmoid(in_ptr[3 * grid_len]) * 2.0; box_x = (box_x + j) * (float)stride; box_y = (box_y + i) * (float)stride; box_w = box_w * box_w * (float)anchor[a * 2]; box_h = box_h * box_h * (float)anchor[a * 2 + 1]; box_x -= (box_w / 2.0); box_y -= (box_h / 2.0); boxes.push_back(box_x); boxes.push_back(box_y); boxes.push_back(box_w); boxes.push_back(box_h); float maxClassProbs = in_ptr[5 * grid_len]; int maxClassId = 0; for (int k = 1; k < YOLOV5_CLASS_NUM; ++k) { float prob = in_ptr[(5 + k) * grid_len]; if (prob > maxClassProbs) { maxClassId = k; maxClassProbs = prob; } } float box_conf_f32 = sigmoid(box_confidence); float class_prob_f32 = sigmoid(maxClassProbs); boxScores.push_back(box_conf_f32* class_prob_f32); classId.push_back(maxClassId); validCount++; } } } } return validCount; } int yolov5_post_process_u8(uint8_t *input0, uint8_t *input1, uint8_t *input2, int model_in_h, int model_in_w, float conf_threshold, float nms_threshold, std::vector &qnt_zps, std::vector &qnt_scales, yolov5_detect_result_group_t *group) { static int init = -1; if (init == -1) { /* int ret = 0; ret = loadLabelName(LABEL_NALE_TXT_PATH, labels); if (ret < 0) { return -1; } */ init = 0; } memset(group, 0, sizeof(yolov5_detect_result_group_t)); std::vector filterBoxes; std::vector boxesScore; std::vector classId; int stride0 = 8; int grid_h0 = model_in_h / stride0; int grid_w0 = model_in_w / stride0; int validCount0 = 0; validCount0 = process_u8(input0, (int *)anchor0, grid_h0, grid_w0, model_in_h, model_in_w, stride0, filterBoxes, boxesScore, classId, conf_threshold, qnt_zps[0], qnt_scales[0]); int stride1 = 16; int grid_h1 = model_in_h / stride1; int grid_w1 = model_in_w / stride1; int validCount1 = 0; validCount1 = process_u8(input1, (int *)anchor1, grid_h1, grid_w1, model_in_h, model_in_w, stride1, filterBoxes, boxesScore, classId, conf_threshold, qnt_zps[1], qnt_scales[1]); int stride2 = 32; int grid_h2 = model_in_h / stride2; int grid_w2 = model_in_w / stride2; int validCount2 = 0; validCount2 = process_u8(input2, (int *)anchor2, grid_h2, grid_w2, model_in_h, model_in_w, stride2, filterBoxes, boxesScore, classId, conf_threshold, qnt_zps[2], qnt_scales[2]); int validCount = validCount0 + validCount1 + validCount2; // no object detect if (validCount <= 0) { return 0; } std::vector indexArray; for (int i = 0; i < validCount; ++i) { indexArray.push_back(i); } quick_sort_indice_inverse(boxesScore, 0, validCount - 1, indexArray); nms(validCount, filterBoxes, indexArray, nms_threshold); int last_count = 0; group->count = 0; /* box valid detect target */ for (int i = 0; i < validCount; ++i) { if (indexArray[i] == -1 || boxesScore[i] < conf_threshold || last_count >= YOLOV5_NUMB_MAX_SIZE) { continue; } int n = indexArray[i]; float x1 = filterBoxes[n * 4 + 0]; float y1 = filterBoxes[n * 4 + 1]; float x2 = x1 + filterBoxes[n * 4 + 2]; float y2 = y1 + filterBoxes[n * 4 + 3]; int id = classId[n]; /* group->results[last_count].box.left = (int)((clamp(x1, 0, model_in_w) - w_offset) / resize_scale); group->results[last_count].box.top = (int)((clamp(y1, 0, model_in_h) - h_offset) / resize_scale); group->results[last_count].box.right = (int)((clamp(x2, 0, model_in_w) - w_offset) / resize_scale); group->results[last_count].box.bottom = (int)((clamp(y2, 0, model_in_h) - h_offset) / resize_scale); */ group->results[last_count].box.left = (int) clamp(x1, 0, model_in_w); group->results[last_count].box.top = (int) clamp(y1, 0, model_in_h); group->results[last_count].box.right = (int) clamp(x2, 0, model_in_w); group->results[last_count].box.bottom = (int) clamp(y2, 0, model_in_h); group->results[last_count].prop = boxesScore[i]; group->results[last_count].class_index = id; char *label = labels[id]; strncpy(group->results[last_count].name, label, YOLOV5_NAME_MAX_SIZE); // printf("result %2d: (%4d, %4d, %4d, %4d), %s\n", i, group->results[last_count].box.left, group->results[last_count].box.top, // group->results[last_count].box.right, group->results[last_count].box.bottom, label); last_count++; } group->count = last_count; return 0; } int yolov5_post_process_fp(float *input0, float *input1, float *input2, int model_in_h, int model_in_w, float conf_threshold, float nms_threshold, yolov5_detect_result_group_t *group) { static int init = -1; if (init == -1) { /* int ret = 0; ret = loadLabelName(LABEL_NALE_TXT_PATH, labels); if (ret < 0) { return -1; } */ init = 0; } memset(group, 0, sizeof(yolov5_detect_result_group_t)); std::vector filterBoxes; std::vector boxesScore; std::vector classId; int stride0 = 8; int grid_h0 = model_in_h / stride0; int grid_w0 = model_in_w / stride0; int validCount0 = 0; validCount0 = process_fp(input0, (int *)anchor0, grid_h0, grid_w0, model_in_h, model_in_w, stride0, filterBoxes, boxesScore, classId, conf_threshold); int stride1 = 16; int grid_h1 = model_in_h / stride1; int grid_w1 = model_in_w / stride1; int validCount1 = 0; validCount1 = process_fp(input1, (int *)anchor1, grid_h1, grid_w1, model_in_h, model_in_w, stride1, filterBoxes, boxesScore, classId, conf_threshold); int stride2 = 32; int grid_h2 = model_in_h / stride2; int grid_w2 = model_in_w / stride2; int validCount2 = 0; validCount2 = process_fp(input2, (int *)anchor2, grid_h2, grid_w2, model_in_h, model_in_w, stride2, filterBoxes, boxesScore, classId, conf_threshold); int validCount = validCount0 + validCount1 + validCount2; // no object detect if (validCount <= 0) { return 0; } std::vector indexArray; for (int i = 0; i < validCount; ++i) { indexArray.push_back(i); } quick_sort_indice_inverse(boxesScore, 0, validCount - 1, indexArray); nms(validCount, filterBoxes, indexArray, nms_threshold); int last_count = 0; group->count = 0; /* box valid detect target */ for (int i = 0; i < validCount; ++i) { if (indexArray[i] == -1 || boxesScore[i] < conf_threshold || last_count >= YOLOV5_NUMB_MAX_SIZE) { continue; } int n = indexArray[i]; float x1 = filterBoxes[n * 4 + 0]; float y1 = filterBoxes[n * 4 + 1]; float x2 = x1 + filterBoxes[n * 4 + 2]; float y2 = y1 + filterBoxes[n * 4 + 3]; int id = classId[n]; /* group->results[last_count].box.left = (int)((clamp(x1, 0, model_in_w) - w_offset) / resize_scale); group->results[last_count].box.top = (int)((clamp(y1, 0, model_in_h) - h_offset) / resize_scale); group->results[last_count].box.right = (int)((clamp(x2, 0, model_in_w) - w_offset) / resize_scale); group->results[last_count].box.bottom = (int)((clamp(y2, 0, model_in_h) - h_offset) / resize_scale); */ group->results[last_count].box.left = (int) clamp(x1, 0, model_in_w); group->results[last_count].box.top = (int) clamp(y1, 0, model_in_h); group->results[last_count].box.right = (int) clamp(x2, 0, model_in_w); group->results[last_count].box.bottom = (int) clamp(y2, 0, model_in_h); group->results[last_count].prop = boxesScore[i]; group->results[last_count].class_index = id; char *label = labels[id]; strncpy(group->results[last_count].name, label, YOLOV5_NAME_MAX_SIZE); // printf("result %2d: (%4d, %4d, %4d, %4d), %s\n", i, group->results[last_count].box.left, group->results[last_count].box.top, // group->results[last_count].box.right, group->results[last_count].box.bottom, label); last_count++; } group->count = last_count; return 0; }