import time from pathlib import Path import datetime import cv2 import numpy as np import torch import torch.backends.cudnn as cudnn from read_data import LoadImages, LoadStreams class DrowsyDetection(): def __init__(self, video_path=None, model=None): self.model = model self.classes = self.model.names self.imgsz = 640 self.stride = self.model.stride self.frame = [None] if video_path is not None: self.video_name = video_path else: self.video_name = 'vid2.mp4' # A default video file self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.dataset = LoadImages(self.video_name, img_size=self.imgsz, stride = self.stride) def use_webcam(self, source): # self.dataset.release() # Release any existing video capture # self.cap = cv2.VideoCapture(0) # Open default webcam # print('use_webcam') self.source = source cudnn.benchmark = True # self.dataset = LoadStreams(source, img_size=self.imgsz) self.dataset = LoadStreams(source) def class_to_label(self, x): return self.classes[int(x)] def get_frame(self): for im0s in self.dataset: # print(self.dataset.mode) # print(self.dataset) if self.dataset.mode == 'stream': img = im0s[0].copy() else: img = im0s.copy() img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) results = self.model(img, size=640) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # Loop through each detected object and count the people accuracy = 0 num_people = 0 bgr = (0, 255, 0) for obj in results.xyxy[0]: xmin, ymin, xmax, ymax = map(int, obj[:4]) accuracy = obj[4] c = int(obj[-1]) if self.classes[c] == 'normal': color = (255, 200, 90) elif self.classes[c] == 'drowsy': color = (0, 0, 255) elif self.classes[c] == 'drowsy#2': color = (0, 0, 255) elif self.classes[c] == 'yawning': color = (51, 255, 255) cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2) cv2.putText(img, f"{self.classes[c]}, {round(float(accuracy), 2)}", (xmin, ymin), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2) ret, jpeg = cv2.imencode(".jpg", img) # print(num_people) return jpeg.tobytes(), ''