algorithm_system_server/algorithm/people_detection_test.py

74 lines
2.1 KiB
Python
Raw Normal View History

2024-06-21 10:06:54 +08:00
import datetime
import os
import time
import ffmpeg
import torch
import cv2
import numpy as np
from multiprocessing import Process, Manager
from threading import Thread
from read_data import LoadImages, LoadStreams
import torch.backends.cudnn as cudnn
def use_webcam(source, model):
source = source
imgsz = 640
cudnn.benchmark = True
dataset = LoadStreams(source, img_size=imgsz)
for im0s in dataset:
# print(self.dataset.mode)
# print(self.dataset)
if dataset.mode == 'stream':
img = im0s[0].copy()
else:
img = im0s.copy()
results = model(img, size=640)
# Loop through each detected object and count the people
num_people = 0
bgr = (0, 255, 0)
for obj in results.xyxy[0]:
# xmin, ymin, xmax, ymax = map(int, obj[:4])
# accuracy = obj[4]
# if (accuracy > 0.5):
# cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2)
# cv2.putText(img, f" {round(float(accuracy), 2), self.classes[obj[-1].item()]}", (xmin, ymin),
# cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
if obj[-1] == 0: # 0 is the class ID for 'person'
# Draw bounding boxes around people
xmin, ymin, xmax, ymax = map(int, obj[:4])
accuracy = obj[4]
if (accuracy > 0.5):
num_people += 1
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2)
cv2.putText(img, f" {round(float(accuracy), 2)}", (xmin, ymin),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
# Draw the number of people on the frame and display it
ret, jpeg = cv2.imencode(".jpg", img)
return jpeg.tobytes()
def time_synchronized():
# pytorch-accurate time
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()