classdef madgwick < handle methods (Static = true) function q = imu(q, Gyroscope, Accelerometer, SamplePeriod, Beta) % Normalise accelerometer measurement acc = Accelerometer; if(norm(acc) == 0), return; end % handle NaN acc = acc / norm(acc); % normalise magnitude % Gradient decent algorithm corrective step F = (quatrotate(q, [0 0 1]) - acc)'; % F = [2*(q(2)*q(4) - q(1)*q(3)) - Accelerometer(1) % 2*(q(1)*q(2) + q(3)*q(4)) - Accelerometer(2) % 2*(0.5 - q(2)^2 - q(3)^2) - Accelerometer(3)]; J = [-2*q(3), 2*q(4), -2*q(1), 2*q(2) 2*q(2), 2*q(1), 2*q(4), 2*q(3) 0, -4*q(2), -4*q(3), 0 ]; step = (J'*F); step = step / norm(step); % normalise step magnitude % Compute rate of change of quaternion qd = 0.5 * quatmultiply(q, [0 Gyroscope]) - Beta * step'; % Integrate to yield quaternion q = q + qd * SamplePeriod; q = q / norm(q); % normalise quaternion end function q = ahrs(q, Gyroscope, Accelerometer, Magnetometer, SamplePeriod, Beta) % Normalise accelerometer measurement if(norm(Accelerometer) == 0), return; end % handle NaN acc = Accelerometer / norm(Accelerometer); % normalise magnitude % Normalise magnetometer measurement if(norm(Magnetometer) == 0), return; end % handle NaN mag = Magnetometer / norm(Magnetometer); % normalise magnitude % Reference direction of Earth's magnetic feild h = quatrotate(quatconj(q), mag); h = [0 h]; b = [0 norm([h(2) h(3)]) 0 h(4)]; % Gradient decent algorithm corrective step F= (quatrotate(q, [0 0 1]) - acc)'; F = [F; (quatrotate(q, [b(2) 0 b(4)]) - mag)']; % F = [2*(q(2)*q(4) - q(1)*q(3)) - Accelerometer(1) % 2*(q(1)*q(2) + q(3)*q(4)) - Accelerometer(2) % 2*(0.5 - q(2)^2 - q(3)^2) - Accelerometer(3) % 2*b(2)*(0.5 - q(3)^2 - q(4)^2) + 2*b(4)*(q(2)*q(4) - q(1)*q(3)) - Magnetometer(1) % 2*b(2)*(q(2)*q(3) - q(1)*q(4)) + 2*b(4)*(q(1)*q(2) + q(3)*q(4)) - Magnetometer(2) % 2*b(2)*(q(1)*q(3) + q(2)*q(4)) + 2*b(4)*(0.5 - q(2)^2 - q(3)^2) - Magnetometer(3)]; J = [-2*q(3), 2*q(4), -2*q(1), 2*q(2) 2*q(2), 2*q(1), 2*q(4), 2*q(3) 0, -4*q(2), -4*q(3), 0 -2*b(4)*q(3), 2*b(4)*q(4), -4*b(2)*q(3)-2*b(4)*q(1), -4*b(2)*q(4)+2*b(4)*q(2) -2*b(2)*q(4)+2*b(4)*q(2), 2*b(2)*q(3)+2*b(4)*q(1), 2*b(2)*q(2)+2*b(4)*q(4), -2*b(2)*q(1)+2*b(4)*q(3) 2*b(2)*q(3), 2*b(2)*q(4)-4*b(4)*q(2), 2*b(2)*q(1)-4*b(4)*q(3), 2*b(2)*q(2)]; step = (J'*F); step = step / norm(step); % normalise step magnitude % Compute rate of change of quaternion qd = 0.5 * quatmultiply(q, [0 Gyroscope]) - Beta * step'; % Integrate to yield quaternion q = q + qd * SamplePeriod; q = q / norm(q); % normalise quaternion end end end