UWBIns/Code/Matlab/AOA-IMU/script_kf.m

155 lines
3.7 KiB
Matlab

clear
clc
close all
load('data1.mat');
nn = size(imuPosX,1);
%% lightHouse坐标系转换
x = lightHousePosX * 100;
y = -lightHousePosZ * 100;
% 定义误差函数,即均方根误差
errorFunction = @(params) sqrt(mean((x(1:500) * cos(params(1)) - y(1:500) * sin(params(1)) + params(2) - imuPosX(1:500)).^2 + (x(1:500) * sin(params(1)) + y(1:500) * cos(params(1)) + params(3) - imuPosY(1:500)).^2));
% 使用 fminsearch 优化误差函数,找到使误差最小的旋转角和位移
initialGuess = [0, 10, 10]; % 初始猜测值,[旋转角, 位移]
optimizedParams = fminsearch(errorFunction, initialGuess);
% 输出优化后的旋转角和位移
rotationAngle = optimizedParams(1);
xOffset = optimizedParams(2);
yOffset = optimizedParams(3);
% 旋转坐标
xt = x * cos(rotationAngle) - y * sin(rotationAngle) + xOffset;
yt = x * sin(rotationAngle) + y * cos(rotationAngle) + yOffset;
%%
tagN = 4;
%标签坐标
XN(:,1)=[-300;-300];
XN(:,2)=[-300;300];
XN(:,3)=[300;300];
XN(:,4)=[300;-300];
sim2=6;
Q=diag(repmat(sim2,1,2*tagN));%协方差矩阵
measure_AOA = zeros(4,nn);
measure_d = zeros(4,nn);
measure_AOA(1,:) = aoa1';
measure_AOA(2,:) = aoa2';
measure_AOA(3,:) = aoa3';
measure_AOA(4,:) = aoa4';
measure_d(1,:) = d1';
measure_d(2,:) = d2';
measure_d(3,:) = d3';
measure_d(4,:) = d4';
%% uwb解算
x_uwb(1) = 0;
y_uwb(1) = 0;
theta_uwb=zeros(nn,1);
for i=2:nn
if measure_d(1,i) == 0
x_uwb(i) = x_uwb(i-1);
y_uwb(i) = y_uwb(i-1);
continue;
end
[t1,theta] = WLS(XN,measure_AOA(:,i),measure_d(:,i),Q);
x_uwb(i) = t1(1);
y_uwb(i) = t1(2);
theta_uwb(i) = 90-theta;
theta_uwb(i) = mod(theta_uwb(i)+180,360)-180;
derr_WLS(i)=norm(t1-[xt(i);yt(i)]);
end
thetat=zeros(nn,1);
for i=2:nn
detx=xt(i)-xt(i-1);
dety=yt(i)-yt(i-1);
thetat(i)=atan2d(detx,dety);
end
% Uwb.x=x_uwb;
% Uwb.y=y_uwb;
% Uwb.alpha=theta_uwb;
% 角速度校准
detW = mean(wZ(1:200));
wZ = wZ - detW;
x_imu(1) = 0;
y_imu(1) = 0;
Z=zeros(3,1);
WW = 0.05;
theta_imu(1) = 0;
%
% Imu.x=x_imu;
% Imu.y=y_imu;
% Imu.v=v_imu;
% Imu.alpha=alpha_imu;
% Imu.omega=omega_imu;
%% KF
R = diag([1 1 1]);
% qq = 1;
qq = 0.005;
Q1 = diag([qq qq qq qq qq]);
P0 = diag([0 0 0 0 0]);
H = [1 0 0 0 0;
0 1 0 0 0;
0 0 0 1 0];
I = eye(5);
JF = zeros(5,5);
X_pre = zeros(5,nn);
X_kf(:,1) = [imuPosX(1);imuPosY(1);vXY(1)*100;0;wZ(1)];
for i=2:nn
% 计算IMU和里程计的时间差值
detImuTime = imuDataRxTime(i) - imuDataRxTime(i-1);
detOdomTime = odomDataRxTime(i)-odomDataRxTime(i-1);
% 获得此时Z轴角速度
w = wZ(i);
% 获得小车的水平速度
v = vXY(i)*100;
% 计算速度增量
detV=(vXY(i)-vXY(i-1))*100;
% 计算位置增量
detD = v*detImuTime;
% 计算角度增量
detTheta = w*180/pi*detImuTime;
% 计算角速度的变化量
detW = w-wZ(i-1);
% 积分计算IMU的航位角
theta_imu(i) = theta_imu(i-1)+detTheta;
% 航向约束
theta_imu(i) = mod(theta_imu(i)+180,360)-180;
% 状态更新方程
F = [1 0 detImuTime*cosd(X_kf(4,i-1)) 0 0;
0 1 detImuTime*sind(X_kf(4,i-1)) 0 0;
0 0 0 0 0;
0 0 0 0 0;
0 0 0 0 0;];
% 获得水平和垂直方向的位置增量
vtx = detD*cosd(theta_imu(i));
vty = detD*sind(theta_imu(i));
x_imu(i) = x_imu(i-1)+vtx;
y_imu(i) = y_imu(i-1)+vty;
X_next = [vtx;vty;detV;detTheta;detW];
if (x_uwb(i) == x_uwb(i-1))&&(y_uwb(i) == y_uwb(i-1))
X_kf(:,i) = X_kf(:,i-1)+X_next;
errKf(i) = norm(X_kf(1:2,i)-[xt(i);yt(i)]);
theta_kf(i) = X_kf(4,i);
continue
end
X_pre(:,i) = X_kf(:,i-1)+X_next;
% 观测矩阵: UWB的位置、UWB的航向角
Z = [x_uwb(i);y_uwb(i);theta_uwb(i)];
P = F*P0*F'+Q1;
Kg_kf = P*H'*inv(H*P*H'+R);
X_kf(:,i) = X_pre(:,i)+Kg_kf*(Z-H*X_pre(:,i));
P0 = (I-Kg_kf*H)*P;
errKf(i) = norm(X_kf(1:2,i)-[xt(i);yt(i)]);
theta_kf(i) = X_kf(4,i);
end
plot(errKf);
mean(errKf)