2022.11 CS231n学习汇报
介绍CS231n部分的学习,包含计算机视觉简介、图像分类(K最邻近算法、线性分类)、神经网络以及卷积神经网络部分
2022.12 行人重识别任务汇报
关于行人重识别第一个阶段的学习汇报
2023.9 行人检测汇报
关于行人检测系列论文汇报汇总
- Co-Scale Conv-Attentional Image Transformers
- LEAPS: End-to-End One-Step Person Search With Learnable Proposals
- Cascade Transformers for End-to-End Person Search
- PSTR: End-to-End One-Step Person Search With Transformers
- FCOS: Fully Convolutional One-Stage Object Detection
- Optimal Proposal Learning for Deployable End-to-End Pedestrian Detection
2024.1 相关论文阅读汇报
包含其他方面结合MAE部分的汇报
- Generic-to-Specific Distillation of Masked Autoencoders
2024.3 2024春季论文汇报
包含MAE有关工作及文章部分汇总
- 
Masked Autoencoders Are Scalable Vision Learners 
- 
BEiT: BERT Pre-Training of Image Transformers 
- 
BEIT V2: Masked Image Modeling with Vector-Quantized Visual Tokenizers 
- 
Uniform Masking: Enabling MAE Pre-training for Pyramid-based Vision Transformers with Locality 
- 
HiViT: Hierarchical Vision Transformer Meets Masked Image Modeling 
- 
MixMAE: Mixed and Masked Autoencoder for Efficient Pretraining of Hierarchical Vision Transformers 
- 
MultiMAE: Multi-modal Multi-task Masked Autoencoders 
- 
ConvMAE: Masked Convolution Meets Masked Autoencoders 
- 
RetroMAE: Pre-training Retrieval-oriented Transformers via Masked Auto-Encoder 
- 
Siamese Masked Autoencoders 
- 
Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation 
- 
Integral Migrating Pre-trained Transformer Encoder-decoders for Visual Object Detection 
- 
Masked Image Modeling with Local Multi-Scale Reconstruction 
- 
VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training 
- 
VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking