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Abstract. Urban surveillance systems face inherent limitations in mon-
itoring complex crowd dynamics due to the restricted coverage of single-
camera setups. This study proposes a novel Spatial-Temporal Graph
Convolutional Network framework for predicting abnormal crowd aggre-
gation. Our method introduces a composite anomaly aggregation met-
ric that synthesizes three critical factors: the spatial distribution of ab-
normal groups (core anomaly intensity), ambient pedestrian flow varia-
tions (environmental sensitivity), and suppression mechanisms for reg-
ular large-scale gatherings. By constructing topological graphs based
on camera networks and performing spatio-temporal convolution opera-
tions, the model effectively integrates multi-view information to iden-
tify latent risk areas. Combining the camera topology structure and
the spatio-temporal graph convolutional network, this method can ac-
curately predict abnormal aggregation points in the spatial and tem-
poral dimensions, and effectively identify potential abnormal risk areas
through multi-camera information fusion. …

Keywords: Spatio-temporal graph convolutional network, Anomalous
crowd prediction, Multi-camera surveillance

1 Introduction.

With the rapid advance of urbanization and the growing demand for public
safety, the deployment of surveillance cameras in urban environments has in-
creased dramatically.These cameras provide real‑time capture and analysis over
large geographic areas, yet each device remains constrained by its limited field
of view and occlusions. Consequently, once an intelligent detection system flags
anomalous behavior using a single camera, it is still challenging to infer where
the affected individuals or crowds will converge. Bridging this gap requires in-
tegrating trajectories from multiple cameras and predicting the final anomaly
aggregation points[1, 2] .
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Fig. 1: Temporal evolution of abnormal aggregation density over 12 consecutive
frames. Each node represents a surveillance camera in the simulated urban net-
work, and the edge indicates physical connectivity or proximity between cameras.
The color intensity of each node reflects the computed abnormal aggregation de-
gree at that time step. Darker nodes indicate higher levels of abnormal crowd
gathering. This visualization illustrates how potential anomaly hotspots evolve
over time and migrate through the camera network.

Recent research in intelligent security has increasingly focused on multi‑camera
systems, aiming to enhance target tracking and anomaly detection through col-
laboration and information fusion. For example, Multi‑Camera Tracking and
Anomaly Detection[1] : A Review surveys methods for associating observations
across views and fusing detection outputs and Deep Learning for Multi‑Camera
Anomaly Detection[2] demonstrates that combining convolutional neural net-
works (CNNs) with recurrent neural networks (RNNs) improves both accuracy
and timeliness of anomaly recognition. In these studies, constructing and exploit-
ing the camera network topology—a graph whose nodes represent cameras and
edges encode spatial relationships or fields‑of‑view overlap—has been shown to
provide a global perspective that is essential for early warning of group events[3,
4]. However, existing approaches[6, 5] typically stop at detecting anomalies; they
do not quantify the degree of crowd convergence nor predict where anomalies will
concentrate. To address this, we introduce a novel metric, the anomaly aggrega-
tion degree, which nonlinearly weights both abnormal and normal crowd flows,
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applying a saturation suppression mechanism to avoid false alarms in dense but
benign gatherings. We model the camera network topology as a graph and em-
bed the time series of aggregation degrees at each node into a Spatio‑Temporal
Graph Convolutional Network[7]. This multi‑layer fusion framework jointly cap-
tures spatial correlations and temporal dynamics, enabling accurate prediction
of potential anomaly hotspots.

In summary, our contributions are threefold: (1) we propose the anomaly
aggregation degree, a unified index that quantifies deviation from normal crowd
patterns; (2) we integrate this metric into a graph representation of camera
topology, enabling global inference; and (3) we achieve high accuracy prediction
of abnormal sink points in complex urban environments.

2 Related Works.

2.1 Camera Topology Diagram.

In multi‑camera systems, camera topology graphs play a crucial role as essential
tools for describing spatial relationships between cameras and their field‑of‑view
coverage.[3] By constructing graph‑theoretical models, camera topology graphs
can effectively represent connection relationships between cameras, overlapping
coverage areas, and information transmission paths.[4] Each camera is repre-
sented as a node in the graph, while the spatial relationships and field‑of‑view
coverage between cameras are connected through edges. This structure provides
the system with a global perspective, facilitating multi‑camera collaboration for
target tracking and anomaly detection.

The application of camera topology graphs in multi-camera systems primar-
ily manifests in the optimization of information fusion and data sharing. Specif-
ically, they enable the integration of data from different cameras, particularly
playing a key role in cross-camera target tracking and abnormal behavior recog-
nition. Furthermore, camera topology graphs have significant applications in
group behavior analysis and event prediction. By correlating perspective infor-
mation from multiple cameras, the topology graph can reveal group dynamics
and promptly identify potential abnormal behaviors for early warning. For in-
stance, when multiple cameras detect abnormal trajectories from a target, rela-
tionship analysis through the topology graph can quickly determine whether the
target interacts with others, thereby enabling early warnings for group events.

2.2 Graph Convolutional Neural Network.

Graph Neural Networks (GNNs) have become an important tool for processing
non‑Euclidean data.[8] Among them, Graph Convolutional Networks (GCNs),
as a classic GNN model, are widely applied in tasks such as node classifica-
tion, graph classification, and link prediction. Kipf and Welling first proposed
the GCN based on spectral methods[11], which effectively captures the local re-
lationships between nodes by performing convolution operations on the graph
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structure. The core idea of GCN is to aggregate and propagate node information
through the adjacency matrix to achieve efficient learning of the global graph
structure.Its basic operation is defined as message passing through the product
of the normalized adjacency matrix and the feature matrix, thereby obtaining
node embeddings.

In recent years, improved models of GCN have emerged in an endless stream[25,
26, 28, 24, 27, 29, 30]. For instance, Graph Attention Networks (GAT)[9] intro-
duced an attention mechanism, enhancing the modeling ability of neighborhood
information on heterogeneous graphs; GraphSAGE[10] proposed a sampling-
based neighborhood aggregation method, significantly improving computational
efficiency on large-scale graph data. Additionally, applications of GCN have
gradually expanded from traditional tasks to areas such as recommendation sys-
tems, social network analysis, and biological network analysis, demonstrating its
powerful ability in handling complex network data. Compared with traditional
machine learning models, GCN can capture the complex interactions between
node features and topological information while preserving the graph structure
information, thus having higher expressive power.

In the field of intelligent security, GCNs have been widely applied in the anal-
ysis of camera topology, especially in tasks such as abnormal behavior detection
and target tracking in multi-camera surveillance systems[20–23]. By modeling
the camera network as a graph structure, where nodes represent individual cam-
eras and edges represent visual or spatial relationships between cameras, GCNs
can efficiently learn and extract features of the camera network. This approach
significantly improves the accuracy of abnormal behavior detection and enhances
the performance of cross-camera target tracking.

2.3 The Combination of Time Series Prediction and Graph Neural
Networks.

Current research combining Graph Neural Networks (GNNs) with time series
prediction models has made significant progress in spatio-temporal data anal-
ysis, particularly in fields such as traffic prediction, environmental monitoring,
and public safety. The ST-GCN[7] framework, by modeling spatial dependen-
cies through graph convolution and integrating convolutional structures to effec-
tively capture temporal dependencies, has significantly improved the accuracy
of traffic flow prediction. TimeGNN[12], through dynamic time graph repre-
sentation, can capture the evolving patterns among multiple time series and
has a faster inference speed than other graph-based methods while maintaining
good predictive performance. StemGNN[13] models the correlations between se-
quences through graph Fourier transform and captures temporal dependencies
through discrete Fourier transform, demonstrating outstanding performance in
multivariate time series prediction. In further optimizing spatio-temporal graph
convolution models, Li et al.’s DyGraphformer[14] model combines graph convo-
lution with Transformer to dynamically infer time-varying spatial dependencies,
achieving excellent performance in multivariate time series prediction. Dai et al.’s
H-STGCN[15] model integrates online navigation data with graph convolution,
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improving the accuracy of traffic flow prediction, especially in the prediction
of non-recurring congestion. The STS-GCN model[16]has made breakthroughs
in the spatio-temporal dynamic modeling of human poses by decomposing the
connections between space and time into spatial and temporal affinity matri-
ces. Additionally, other studies such as Feng et al.’s GCNInformer model[17],
which combines graph convolution with Informer to optimize air quality predic-
tion, has shown good stability in long-term predictions; Lira et al.’s GRAST-
Frost model[18], which combines graph neural networks with spatio-temporal
attention mechanisms for frost prediction, has significantly improved predic-
tion accuracy.The STAGCN model[19] proposed by Ma et al. combines adaptive
graph convolution and spatio-temporal convolution, and performs particularly
outstandingly in multi-step traffic flow prediction.

3 Method.

3.1 Spatial-Temporal Graph Convolutional Network.

The input of the model consists of a series of graph-structured data arranged
in chronological order, where the nodes in the graph represent different spatial
regions under various cameras, and each node carries the features of the corre-
sponding region at the respective time. The edges between nodes in the graph
represent spatial adjacency or functional association, which is used to describe
the mutual influence and connection between different regions. The input data
can be regarded as a graph tensor with a time dimension, where each frame
graph contains the feature vectors of all nodes.

The model employs one-dimensional gated temporal convolution to model the
dynamic evolution of the crowd across consecutive frames. This layer adaptively
regulates the information flow through a gating mechanism (update gate and
reset gate), sending the input features to the convolution branch and the gating
branch respectively. The convolution branch generates candidate features, while
the gating branch generates control signals. The two are element-wise multiplied
to complete the feature update. The gated design can effectively suppress noise
and irrelevant information, thereby highlighting the dynamic changes at key time
steps. Stacking multiple layers of such gated convolutions not only expands the
model’s temporal receptive field but also enhances its ability to capture features
at different time scales.

In the spatial domain, the model uses spectral graph convolution to ex-
tract the dependencies between adjacent nodes. Specifically, an approximation
method based on Chebyshev polynomial expansion is used to approximate the
graph Laplacian operator to the kth order polynomial, without the need for
explicit eigenvalue decomposition. Each spectral graph convolution layer aggre-
gates the features of the node itself and its kth-order neighbors through polyno-
mial weighted summation, achieving multi-scale spatial information aggregation.

The overall network is composed of multiple stacked basic units of ”gated
temporal convolution - spectral graph convolution - gated temporal convolu-
tion”. In each unit, the initial gated convolution layer extracts the temporal
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features of the nodes and filters out irrelevant fluctuations; then the spectral
graph convolution layer aggregates neighborhood information and characterizes
spatial dependencies; finally, another gated convolution layer further integrates
high-level features across time. By cascading multiple such units, the model
learns deeper spatio-temporal correlation representations layer by layer. Ulti-
mately, the abnormal aggregation degree of each node within the future time
window is obtained.

3.2 Anomaly Aggregation Degree.
In the field of public safety and crowd management, traditional monitoring sys-
tems often encounter the problem of distorted assessment in complex scenarios:
methods based on absolute numbers or linear weighting are unable to distinguish
between occasional anomalies and major risks, fluctuations in the base number of
ordinary people can easily mask real abnormal aggregations, and fixed threshold
strategies lack adaptability to dynamic environments. Therefore, this project
separately calculates and weights the aggregations of abnormal and ordinary
people, and develops a weighted algorithm based on a nonlinear coupling mech-
anism.

When studying crowd aggregation behavior, if only abnormal people are
focused on, the risks caused by abnormal aggregations within the ordinary pop-
ulation may be overlooked; while if only the ordinary population is focused on,
normal aggregations may be misjudged. Therefore, in order to more comprehen-
sively and accurately assess the abnormality of crowd aggregations, this paper
attempts to unify the behavioral characteristics of abnormal and ordinary peo-
ple and construct a comprehensive quantitative indicator - abnormal aggregation
degree.

The abnormal aggregation degree aims to measure the degree to which the
crowd aggregation behavior in a specific area deviates from the normal pattern
through multi-dimensional analysis of flow data, thereby providing a scientific
basis for the prediction of abnormal points. Specifically, the design of this indi-
cator needs to take into account the following two aspects: on the one hand, for
the behavioral characteristics of abnormal people, a higher weight is assigned
to highlight their potential risks; on the other hand, for the aggregation behav-
ior of ordinary people, it is necessary to avoid misjudgments due to excessive
sensitivity.

We divide our algorithm into core abnormal items, environmental sensitive
items, and saturation suppression items to ensure effective differentiation be-
tween abnormal aggregations and regular behaviors, thereby enhancing the sys-
tem’s response capability.

Specifically, the mathematical expression of the core abnormal item is:

T1 =
Nα

anomaly

β +N
α/2
anomaly

(1)

where Nanomaly represents the number of anomalous individuals, α controls the
nonlinear degree of the impact of the anomalous population size on aggregation
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degree, and β serves as a balancing term to prevent the core anomaly degree
from becoming overly sensitive or experiencing excessive amplification during
small-scale anomaly occurrences.

Through the exponential weighting of Nanomaly, the impact of increasing
anomalous population size on the core anomaly degree achieves nonlinear am-
plification. This design ensures that as the anomalous population grows, the risk
of abnormal aggregation is appropriately

In the calculation of anomalous aggregation degree, the environmental sensi-
tivity term is primarily employed to quantify the impact of aggregation behaviors
within the normal population on the anomalous aggregation degree. The aggre-
gation behaviors of the normal population are typically driven by routine social
activities, occupational demands, or daily mobility. Even in densely populated
environments, while these behaviors may induce certain density fluctuations,
they do not directly trigger security risks. Therefore, when designing the anoma-
lous aggregation degree, it is essential to prevent the system from overreacting
to such routine behaviors, thereby maintaining its accuracy and robustness.

To achieve this objective, the environmental sensitivity term adopts a loga-
rithmically weighted form, with its mathematical expression formulated as:

T2 = ln

(
1 +

Nnormal
γ

)
(2)

where Nnormal denotes the normal population flow, and γ is the regulatory pa-
rameter that controls the degree of influence exerted by the aggregation behav-
iors of the normal population on the anomalous aggregation degree.

The introduction of this logarithmic function ensures that when the normal
population flow becomes large, the sensitivity of anomalous aggregation degree
to normal population aggregation gradually diminishes, thereby preventing ex-
cessive system reactions induced by routine population gatherings.

From a mathematical perspective, the design principle of the environmental
sensitivity term is grounded in the smoothing treatment of routine population
aggregation behaviors. As Nnormal increases, ln

(
1 + Nnormal

γ

)
asymptotically ap-

proaches a plateau, indicating that the system’s responsiveness to large-scale
normal population gatherings gradually diminishes. This mechanism effectively
mitigates oversensitivity to routine aggregation behaviors in high-traffic envi-
ronments, thereby reducing the likelihood of false alarms.

The introduction of the parameter γ endows the system with flexibility
for scenario-specific adaptations. In high-traffic environments, appropriately in-
creasing γ reduces the contribution of normal population aggregation to the
anomalous aggregation degree, preventing excessive system reactions to daily
crowd fluctuations. Conversely, in low-traffic or specialized scenarios, decreasing
γ enhances the system’s sensitivity to anomalous aggregation behaviors, en-
suring timely detection of irregularities.Through this design, the environmental
sensitivity term achieves a balanced response to aggregation behaviors of the
normal population, preventing false alarms during large-scale routine gather-
ings while ensuring that anomalous behaviors remain detectable in low-traffic or
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specialized scenarios. This mechanism guarantees that the anomalous aggrega-
tion degree precisely quantifies the actual risk of abnormal crowd aggregation in
dynamic and complex environments.

The saturation suppression term achieves additional smoothing of contribu-
tions from large-scale normal population aggregation, ensuring that under ex-
treme crowd flow conditions the system does not overreact to routine aggregation
behaviors. Its mathematical formulation is expressed as:

T3 =
Nanomaly erf

(
Nnormal

ν

)
√
1 +Nnormal

(3)

where Nanomaly denotes the anomaly crowd flow, Nnormal denotes the normal
crowd flow, ν is the parameter controlling the saturation effect intensity, and
erf(x) is the error function, defined as:

erf(x) =
2√
π

∫ x

0

e−t2 dt (4)

erf(x) plays a key role in this design. Its properties enable the system to
react strongly to small‑scale normal crowd gatherings, while its effect gradually
saturates as the normal crowd flow increases. Specifically, when Nnormal is small,
the ratio Nnormal/ν is low, and erf(Nnormal/ν) grows approximately linearly with
Nnormal, thereby amplifying the influence of the anomaly crowd. Conversely, as
Nnormal becomes large, erf(Nnormal/ν) approaches 1, indicating that the nor-
mal crowd’s impact has reached its maximum. At this stage, the denominator
1 + Nnormal further attenuates the contribution of normal flow to the anomaly
aggregation degree, ensuring that in high‑density scenarios the system does not
overreact.

The saturation suppression term achieves a desirable balance in complex
crowd behavior contexts: on one hand, it guarantees prompt response to anoma-
lous aggregation under low crowd density; on the other hand, when crowd flow is
high, the system’s sensitivity to normal gatherings diminishes, thereby avoiding
false alarms in inherently dense environments such as shopping malls or transit
hubs. Through this nonlinear weighting, the system effectively distinguishes true
anomalous aggregation from normal crowd behavior, enhancing both detection
accuracy and robustness.

Furthermore, the introduction of the parameter ν provides flexibility across
different settings. A smaller ν increases sensitivity to normal crowd gatherings,
whereas a larger ν makes the system more tolerant in high‑density environments.
Thus, ν can be tuned according to specific application requirements to achieve
optimal anomaly aggregation degree prediction.

Hence, we obtain the complete weighted algorithm:

T =
Nα

anomaly

β +N
α/2
anomaly︸ ︷︷ ︸

T1(core anomaly intensity)

+ ln

(
1 +

Nnormal
γ

)
︸ ︷︷ ︸

T2 (environmental sensitivity)

+
Nanomaly erf

(
Nnormal

ν

)
√
1 +Nnormal︸ ︷︷ ︸

T3 (saturation suppression)

(5)
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Overall, the weighting design of the anomaly aggregation degree innovatively
combines nonlinear weighting, saturation suppression, and adaptive adjustment
mechanisms, enabling precise discrimination between anomalous and routine ag-
gregation behaviors across scenarios of varying scale and complexity. By appro-
priately allocating weights to anomalous and normal crowds, the system main-
tains efficient responsiveness in dynamic environments while avoiding false pos-
itives and excessive reactions.

4 Experiment.

To conduct an in-depth study of the spatial aggregation of normal and ab-
normal populations within urban road networks, this research constructs and
operates a high-precision simulation environment based on a regular grid on a
high-performance computing platform.

The simulation servers are equipped with two systems: one features an Intel
i9 11900KF processor, 128 GB DDR4 memory, and an NVIDIA RTX 4090.

The simulation environment uses a 2.5m x 2.5m grid as the smallest cell
unit. Every 4x4 grids (10m x 10m) are merged and defined as the smallest
building unit, to ensure consistency in model scale.The entire area is divided
into road systems and building zones: Major roads (main streets) are 6 grid cells
wide (15 m), designed as two-way four-lane roads; Secondary roads (medium
streets) are 3 grid cells wide (7.5 m), set as one-way dual-lane roads; Tertiary
roads (small lanes) are 1 grid cell wide (2.5 m), used for microscopic movement
between buildings. Building units are categorized into three sizes: small (4 grid
cells), medium (16 grid cells), and large (36 grid cells). These buildings are
randomly distributed within the road gaps, ensuring road connectivity without
any blockage.

On this spatial structure, fixed cameras are installed at various road inter-
sections and key sections along the roads, with a field of view covering 4x4
grid cells (10m x 10m). These cameras generate spatiotemporal traffic data by
real-time counting of individuals within their coverage area.Normal pedestrians
(blue) randomly appear on the sides of the roads, with randomly assigned des-
tinations such as road ends or building entrances, simulating the movement of
regular pedestrians.

Abnormal pedestrians (red) are also generated on the roadside but aim for
predetermined gathering points. Their path decision-making has different prob-
abilities for choosing major roads, secondary roads, and tertiary roads, set at 0.7,
0.2, and 0.1 respectively. Additionally, Gaussian noise is introduced into their
movements to simulate irregular walking patterns. As the simulation progresses,
abnormal pedestrians gradually converge at the gathering points, creating a high-
density aggregation effect. This setup allows for the study of crowd dynamics
and the identification of unusual congregation behaviors in urban environments.

This simulation program generates controlled normal and abnormal crowd
data using detailed grid division, multi-level road-building layouts, and clear
pedestrian movement rules. The output, including camera flow data and gath-
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Fig. 2: The simulation visualization interface for crowd aggregation; grey areas
represent roads, red dots indicate abnormal gathering crowds, and blue dots
represent normal pedestrians. The larger red markers are the destinations of the
gatherings.

ering point density curves, serves as direct training and validation datasets for
spatiotemporal graph convolutional network models.

To validate the proposed weighted abnormal aggregation index, we simu-
late three typical abnormal crowd behaviors: incidental group behavior, protest
marches, and urban riots. Each scenario includes normal pedestrian flows and
controlled introduction of abnormal individuals to create diverse abnormal ag-
gregation situations.

In our simulations of various behaviors, we designed three input strategies to
evaluate the impact of different information sources on the prediction of abnor-
mal gathering points. The first strategy (”Baseline–Normal”) uses only normal
pedestrian flow Nnormal; the second strategy (”Baseline–Anomaly”) uses only ab-
normal pedestrian flow Nanomaly; and the third strategy employs the proposed
weighted abnormal aggregation index, integrating both normal and abnormal
flows. All inputs are fed into the same model to ensure a fair comparison.

The proportion of true abnormal points among the top-x predicted gathering
points is recorded as Hit Rate@x. The experimental results are presented in the
table below:

In addition, as indicated by the Hit Rate@1 and Hit Rate@3 metrics, the
weighted strategy demonstrates clear advantages in both precise localization (Hit
Rate@1) and candidate set coverage (Hit Rate@3). Across the three scenarios,
Hit Rate@1 improves by an average of approximately 0.12, while Hit Rate@3
shows an average improvement of around 0.17.

These results suggest that the proposed weighted abnormal aggregation de-
gree, which integrates both normal and abnormal pedestrian flows, can more
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Table 1: Incidental Crowd Scenario Hit Rate Comparison
Strategy Hit Rate@1 Hit Rate@3 Hit Rate@5

Baseline–Normal 0.12 0.30 0.42
Baseline–Anomaly 0.22 0.45 0.58
Ours–Weighted 0.35 0.62 0.73

Table 2: Demonstration Scenario Hit Rate Comparison
Strategy Hit Rate@1 Hit Rate@3 Hit Rate@5

Baseline–Normal 0.10 0.28 0.40
Baseline–Anomaly 0.20 0.38 0.56
Ours–Weighted 0.32 0.58 0.71

accurately and reliably capture spatial hotspots of various sudden gathering
events. Consequently, it effectively enhances both the success rate and robust-
ness of gathering point prediction.

Table 3: Urban Riot Scenario Hit Rate Comparison
Strategy Hit Rate@1 Hit Rate@3 Hit Rate@5

Baseline–Normal 0.08 0.25 0.38
Baseline–Anomaly 0.18 0.35 0.54
Ours–Weighted 0.30 0.55 0.69

5 Conclusion.

This paper addresses the challenge of predicting sudden crowd gathering events
in urban road networks by proposing a spatio-temporal graph convolutional
framework based on weighted abnormal aggregation degree. In terms of method
design, it innovatively introduces a weighted fusion strategy of normal and ab-
normal pedestrian flows, achieving precise characterization of potential gather-
ing points through comprehensive modeling of the intensities of both types of
pedestrian flows. Meanwhile, it combines a high-precision regular grid simulation
environment to generate multi-scenario and multi-type normal and abnormal
pedestrian data, providing reliable support for model training and evaluation.In
the experimental verification, we compared the performance of gathering point
prediction under three input strategies - using only normal pedestrian flow, using
only abnormal pedestrian flow, and the weighted abnormal aggregation degree
proposed in this paper - for three typical abnormal scenarios: occasional group
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behavior, demonstrations, and urban riots. The results show that in key metrics
such as Hit Rate@5, @3, and @1, Ours-Weighted significantly outperforms the
two baseline strategies.

The above experimental results fully demonstrate the advantage of the weighted
fusion strategy in capturing spatial hotspots of sudden gathering events. At the
same time, the multi-type behavior samples generated on the simulation plat-
form provide rich test scenarios and reference data for subsequent research.
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