import os import sys import random import math import numpy as np import skimage.io import cv2 import matplotlib import matplotlib.pyplot as plt # Root directory of the project ROOT_DIR = os.path.abspath("../") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library # from mrcnn import utils import mrcnn.model as modellib from mrcnn import visualize from mrcnn import utils # Import COCO config sys.path.append(os.path.join(ROOT_DIR, "samples/coco/")) # To find local version import coco # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Local path to trained weights file COCO_MODEL_PATH = os.path.join(ROOT_DIR, "model/mask_rcnn_coco.h5") # Download COCO trained weights from Releases if needed # if not os.path.exists(COCO_MODEL_PATH): # utils.download_trained_weights(COCO_MODEL_PATH) # Directory of images to run detection on IMAGE_DIR = os.path.join(ROOT_DIR, "images") file_names = 'images/tum_rgb.png' if len(sys.argv) > 1: file_names = sys.argv[1] # file_names = 'results/0.png' class InferenceConfig(coco.CocoConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 config = InferenceConfig() config.display() # Create model object in inference mode. model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) # Load weights trained on MS-COCO model.load_weights(COCO_MODEL_PATH, by_name=True) # COCO Class names # Index of the class in the list is its ID. For example, to get ID of # the teddy bear class, use: class_names.index('teddy bear') class_names = [ 'BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] # Load a random image from the images folder # file_names = next(os.walk(IMAGE_DIR))[2] # image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names))) image = skimage.io.imread(os.path.join(ROOT_DIR, file_names)) # Use opencv to reead file # image = cv2.imread(os.path.join(ROOT_DIR, file_names)) print(image.shape) # Run detection results = model.detect([image], verbose=1) # Visualize results r = results[0] # visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], # class_names, r['scores']) rois = r['rois'] masks = r['masks'] class_ids = r['class_ids'] scores = r['scores'] N = rois.shape[0] print("ROIS: ", rois.shape) print("masks: ", masks.shape) print("class ID: ", class_ids.shape) print("scores:", scores.shape) print("Class 0: ", class_ids[0]) print("0-> score: ", scores[0]) print("0-> mask: ", masks[:, :, 0].shape) print("0-> rois: ", rois[:,0].shape) for i in range(N): print('=========== %d ========' %i) mask = masks[:,:,i] print(mask) print("mask: ", mask.shape) # print('mask as uint8', mask.astype(uint8)) print('type: ', mask.dtype) file_name = 'mask' + str(i) + '.png' cv2.imwrite(file_name, mask*255)