""" Mask R-CNN Train on the toy Balloon dataset and implement color splash effect. Copyright (c) 2018 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by Waleed Abdulla ------------------------------------------------------------ Usage: import the module (see Jupyter notebooks for examples), or run from the command line as such: # Train a new model starting from pre-trained COCO weights python3 balloon.py train --dataset=/path/to/balloon/dataset --weights=coco # Resume training a model that you had trained earlier python3 balloon.py train --dataset=/path/to/balloon/dataset --weights=last # Train a new model starting from ImageNet weights python3 balloon.py train --dataset=/path/to/balloon/dataset --weights=imagenet # Apply color splash to an image python3 balloon.py splash --weights=/path/to/weights/file.h5 --image= # Apply color splash to video using the last weights you trained python3 balloon.py splash --weights=last --video= """ import os import sys import json import datetime import numpy as np import skimage.draw # Root directory of the project ROOT_DIR = os.path.abspath("../../") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn.config import Config from mrcnn import model as modellib, utils # Path to trained weights file COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # Directory to save logs and model checkpoints, if not provided # through the command line argument --logs DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs") ############################################################ # Configurations ############################################################ class BalloonConfig(Config): """Configuration for training on the toy dataset. Derives from the base Config class and overrides some values. """ # Give the configuration a recognizable name NAME = "balloon" # We use a GPU with 12GB memory, which can fit two images. # Adjust down if you use a smaller GPU. IMAGES_PER_GPU = 2 # Number of classes (including background) NUM_CLASSES = 1 + 1 # Background + balloon # Number of training steps per epoch STEPS_PER_EPOCH = 100 # Skip detections with < 90% confidence DETECTION_MIN_CONFIDENCE = 0.9 ############################################################ # Dataset ############################################################ class BalloonDataset(utils.Dataset): def load_balloon(self, dataset_dir, subset): """Load a subset of the Balloon dataset. dataset_dir: Root directory of the dataset. subset: Subset to load: train or val """ # Add classes. We have only one class to add. self.add_class("balloon", 1, "balloon") # Train or validation dataset? assert subset in ["train", "val"] dataset_dir = os.path.join(dataset_dir, subset) # Load annotations # VGG Image Annotator (up to version 1.6) saves each image in the form: # { 'filename': '28503151_5b5b7ec140_b.jpg', # 'regions': { # '0': { # 'region_attributes': {}, # 'shape_attributes': { # 'all_points_x': [...], # 'all_points_y': [...], # 'name': 'polygon'}}, # ... more regions ... # }, # 'size': 100202 # } # We mostly care about the x and y coordinates of each region # Note: In VIA 2.0, regions was changed from a dict to a list. annotations = json.load(open(os.path.join(dataset_dir, "via_region_data.json"))) annotations = list(annotations.values()) # don't need the dict keys # The VIA tool saves images in the JSON even if they don't have any # annotations. Skip unannotated images. annotations = [a for a in annotations if a['regions']] # Add images for a in annotations: # Get the x, y coordinaets of points of the polygons that make up # the outline of each object instance. These are stores in the # shape_attributes (see json format above) # The if condition is needed to support VIA versions 1.x and 2.x. if type(a['regions']) is dict: polygons = [r['shape_attributes'] for r in a['regions'].values()] else: polygons = [r['shape_attributes'] for r in a['regions']] # load_mask() needs the image size to convert polygons to masks. # Unfortunately, VIA doesn't include it in JSON, so we must read # the image. This is only managable since the dataset is tiny. image_path = os.path.join(dataset_dir, a['filename']) image = skimage.io.imread(image_path) height, width = image.shape[:2] self.add_image( "balloon", image_id=a['filename'], # use file name as a unique image id path=image_path, width=width, height=height, polygons=polygons) def load_mask(self, image_id): """Generate instance masks for an image. Returns: masks: A bool array of shape [height, width, instance count] with one mask per instance. class_ids: a 1D array of class IDs of the instance masks. """ # If not a balloon dataset image, delegate to parent class. image_info = self.image_info[image_id] if image_info["source"] != "balloon": return super(self.__class__, self).load_mask(image_id) # Convert polygons to a bitmap mask of shape # [height, width, instance_count] info = self.image_info[image_id] mask = np.zeros([info["height"], info["width"], len(info["polygons"])], dtype=np.uint8) for i, p in enumerate(info["polygons"]): # Get indexes of pixels inside the polygon and set them to 1 rr, cc = skimage.draw.polygon(p['all_points_y'], p['all_points_x']) mask[rr, cc, i] = 1 # Return mask, and array of class IDs of each instance. Since we have # one class ID only, we return an array of 1s return mask.astype(np.bool), np.ones([mask.shape[-1]], dtype=np.int32) def image_reference(self, image_id): """Return the path of the image.""" info = self.image_info[image_id] if info["source"] == "balloon": return info["path"] else: super(self.__class__, self).image_reference(image_id) def train(model): """Train the model.""" # Training dataset. dataset_train = BalloonDataset() dataset_train.load_balloon(args.dataset, "train") dataset_train.prepare() # Validation dataset dataset_val = BalloonDataset() dataset_val.load_balloon(args.dataset, "val") dataset_val.prepare() # *** This training schedule is an example. Update to your needs *** # Since we're using a very small dataset, and starting from # COCO trained weights, we don't need to train too long. Also, # no need to train all layers, just the heads should do it. print("Training network heads") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=30, layers='heads') def color_splash(image, mask): """Apply color splash effect. image: RGB image [height, width, 3] mask: instance segmentation mask [height, width, instance count] Returns result image. """ # Make a grayscale copy of the image. The grayscale copy still # has 3 RGB channels, though. gray = skimage.color.gray2rgb(skimage.color.rgb2gray(image)) * 255 # Copy color pixels from the original color image where mask is set if mask.shape[-1] > 0: # We're treating all instances as one, so collapse the mask into one layer mask = (np.sum(mask, -1, keepdims=True) >= 1) splash = np.where(mask, image, gray).astype(np.uint8) else: splash = gray.astype(np.uint8) return splash def detect_and_color_splash(model, image_path=None, video_path=None): assert image_path or video_path # Image or video? if image_path: # Run model detection and generate the color splash effect print("Running on {}".format(args.image)) # Read image image = skimage.io.imread(args.image) # Detect objects r = model.detect([image], verbose=1)[0] # Color splash splash = color_splash(image, r['masks']) # Save output file_name = "splash_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now()) skimage.io.imsave(file_name, splash) elif video_path: import cv2 # Video capture vcapture = cv2.VideoCapture(video_path) width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = vcapture.get(cv2.CAP_PROP_FPS) # Define codec and create video writer file_name = "splash_{:%Y%m%dT%H%M%S}.avi".format(datetime.datetime.now()) vwriter = cv2.VideoWriter(file_name, cv2.VideoWriter_fourcc(*'MJPG'), fps, (width, height)) count = 0 success = True while success: print("frame: ", count) # Read next image success, image = vcapture.read() if success: # OpenCV returns images as BGR, convert to RGB image = image[..., ::-1] # Detect objects r = model.detect([image], verbose=0)[0] # Color splash splash = color_splash(image, r['masks']) # RGB -> BGR to save image to video splash = splash[..., ::-1] # Add image to video writer vwriter.write(splash) count += 1 vwriter.release() print("Saved to ", file_name) ############################################################ # Training ############################################################ if __name__ == '__main__': import argparse # Parse command line arguments parser = argparse.ArgumentParser( description='Train Mask R-CNN to detect balloons.') parser.add_argument("command", metavar="", help="'train' or 'splash'") parser.add_argument('--dataset', required=False, metavar="/path/to/balloon/dataset/", help='Directory of the Balloon dataset') parser.add_argument('--weights', required=True, metavar="/path/to/weights.h5", help="Path to weights .h5 file or 'coco'") parser.add_argument('--logs', required=False, default=DEFAULT_LOGS_DIR, metavar="/path/to/logs/", help='Logs and checkpoints directory (default=logs/)') parser.add_argument('--image', required=False, metavar="path or URL to image", help='Image to apply the color splash effect on') parser.add_argument('--video', required=False, metavar="path or URL to video", help='Video to apply the color splash effect on') args = parser.parse_args() # Validate arguments if args.command == "train": assert args.dataset, "Argument --dataset is required for training" elif args.command == "splash": assert args.image or args.video,\ "Provide --image or --video to apply color splash" print("Weights: ", args.weights) print("Dataset: ", args.dataset) print("Logs: ", args.logs) # Configurations if args.command == "train": config = BalloonConfig() else: class InferenceConfig(BalloonConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 config = InferenceConfig() config.display() # Create model if args.command == "train": model = modellib.MaskRCNN(mode="training", config=config, model_dir=args.logs) else: model = modellib.MaskRCNN(mode="inference", config=config, model_dir=args.logs) # Select weights file to load if args.weights.lower() == "coco": weights_path = COCO_WEIGHTS_PATH # Download weights file if not os.path.exists(weights_path): utils.download_trained_weights(weights_path) elif args.weights.lower() == "last": # Find last trained weights weights_path = model.find_last() elif args.weights.lower() == "imagenet": # Start from ImageNet trained weights weights_path = model.get_imagenet_weights() else: weights_path = args.weights # Load weights print("Loading weights ", weights_path) if args.weights.lower() == "coco": # Exclude the last layers because they require a matching # number of classes model.load_weights(weights_path, by_name=True, exclude=[ "mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) else: model.load_weights(weights_path, by_name=True) # Train or evaluate if args.command == "train": train(model) elif args.command == "splash": detect_and_color_splash(model, image_path=args.image, video_path=args.video) else: print("'{}' is not recognized. " "Use 'train' or 'splash'".format(args.command))